
On changing models in Model-Based Testing

Machiel van der Bijl

Promotiecommissie:

Prof. dr. ir. A.J. Mouthaan (voorzitter) Universiteit Twente
Prof. dr. H. Brinksma (promotor) Universiteit Twente
Prof. dr. ir. A. Rensink (promotor) Universiteit Twente
Dr. ir. G.J. Tretmans (ass. promotor) Radboud Universiteit Nijmegen
Prof. dr. ir. M. Aksit Universiteit Twente
Prof. dr. J.C. van de Pol Universiteit Twente
Prof. dr. ir. A.J.C. van Gemund Technische Universiteit Delft
Dr. V. Rusu INRIA/INRISA

CTIT Dissertation Series No. 11-198
Center for Telematics and Information Technology (CTIT)
P.O. Box 217 - 7500AE Enschede - the Netherlands
ISSN: 1381-3617

IPA Dissertation Series No. 2011-07
The work in this thesis has been carried out under the auspices of the Insti-
tute for Programming Research and Algorithms (IPA) research school.

This research was supported by the Dutch research program PROGRESS
under project: TES5417: Atomyste ATOm splitting in eMbedded sYStems
TEsting.

ON CHANGING MODELS
IN MODEL-BASED TESTING

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 12 mei 2011 om 12.45 uur

door

Hendrik Michaël van der Bijl

geboren op 10-08-1973
te Dordrecht

Dit proefschrift is goedgekeurd door:
Prof. dr. H. Brinksma (promotor)
Prof. dr. ir. A. Rensink (promotor)
Dr. ir. G.J. Tretmans (ass. promotor)

copyright c© 2011 by Machiel van der Bijl, Leusden, the Netherlands.
ISBN: 978-90-365-3195-5

Acknowledgments

Doing a Ph.D. is an interesting phenomenon that has a profound impact on
the researcher and his environment. I am very thankful that I have been
given this opportunity (and that I have taken it). I am indebted to a long
list of people that supported me through the years, too many to name them
all, but I thank you all.

Many thanks are due to Ed Brinksma, Arend Rensink and Jan Tretmans.
For sharing numerous insights in commenting upon my work, for teaching
me the tricks of the trade and for keeping up with me. You taught me a lot
and I thank you!

I am grateful to the members of my graduation committee for spending
their precious time and for their useful comments.

My colleagues of the FMT group at the Universiteit Twente. You have
made my days into a most enjoyable and fruitful experience. In particular I
would like to thank my roomies Joost Noppen and Bedir Tekinerdogan for
pleasant times and interesting, lively discussions.

I also want to thank Kate Demuth and Mark Johnson. Thanks for
showing me the wonderful world of science and piquing my interest with
your enthusiasm. Thanks for broadening my horizons.

Many thanks to Pim Kars for introducing me to the fascinating area of
software testing, for showing me the formal world of software construction
and for many pleasant conversations. You showed me that one can mix
business with science and pleasure (or have I got it all backwards?).

My dear colleagues at Axini, thanks for your patience while my boekje
was not yet, or almost, finished. I took my time and I thank you for your
support, teasing and lots of fun at work.

Finally, I would like to thank all my friends and family for their encour-
agement and moral support over the years. In particular I would like to
thank my parents, without their love, support and care it would not have
happened. Last but not least I thank Rudina, for the things that really
matter.

v

Contents

1 Introduction 1

1.1 Why software testing is difficult 1

1.1.1 Software development in the real world 4

1.2 Model-Based Testing . 6

1.3 Research questions . 7

1.4 Overview of the thesis . 10

2 Model-Based Testing 11

2.1 Introduction . 11

2.2 Framework for conformance testing 12

2.3 Labeled transition system models 17

2.3.1 Labeled transition systems 18

2.3.2 Representing labeled transition systems 21

2.3.3 Input-enabled transition systems 24

2.4 Input output implementation relations 27

2.4.1 Implementation relations defined for IOA 29

2.4.2 IOCO based testing 33

2.5 Testing transition systems . 37

2.6 Conclusion and introspection 42

3 Compositional testing with ioco 45

3.1 Introduction . 45

3.2 Approach . 48

3.3 Central questions in compositional testing 50

3.3.1 Parallel composition 50

3.3.2 Hiding . 52

3.4 Underspecification . 53

3.4.1 Completion . 54

3.4.2 From ioco to uioco 57

3.4.3 Changed semantics for the parallel operator 58

3.4.4 Chaos and convergence. 60

3.5 Testing in context . 61

3.6 Conclusions . 62

vii

4 Action Refinement and Model-Based Testing 65

4.1 Introduction . 65

4.2 Action refinement scenarios 67

4.2.1 Refinement function 67

4.2.2 Linear output splitting 69

4.2.3 Calculator . 69

4.2.4 Remote procedure call 71

4.2.5 Abstraction from underlying components 74

4.2.6 User interface refinements 77

4.2.7 Database transactions 78

4.3 Requirements on action refinement for model-based testing . 78

4.4 Action refinement results . 81

4.4.1 Relevance for model-based testing 86

4.5 Action refinement classification 88

4.6 Atomic action refinement in model-based testing 90

4.7 Conclusion . 93

5 Using atomic refinement to obtain refined test-cases 95

5.1 Introduction . 95

5.2 Transition system refinement 95

5.3 Trace refinement . 98

5.4 ioco with refinement . 102

5.5 Test-case refinement . 104

5.5.1 Mini-test generation 105

5.5.2 Building the skeleton for refined test-cases 107

5.5.3 Turning test-case skeletons into proper test-cases . . . 110

5.5.4 Completeness of test-case refinement 113

5.6 Constraints revisited . 116

5.7 Conclusion . 120

5.8 Directions for further research 121

5.8.1 Non-atomic model refinement 121

5.8.2 Non-atomic test-case refinement 125

5.8.3 Relaxed refinement . 126

6 Concluding remarks 129

A Proofs of Chapter 3: Compositional testing with ioco 131

A.1 Proofs of Section 3.3.1: Parallel composition 131

A.2 Proofs of Section 3.3.2: Hiding 138

A.3 Proofs of Section 3.4: Underspecification 145

A.4 Proofs of Section 3.4.3: New parallel composition operator . . 155

B Proofs of Chapter 5: Atomic action refinement in MBT 175
B.1 Proofs Section 5.3: Trace refinement 175
B.2 Proofs Section 5.2: LTS refinement 180
B.3 Proofs Section 5.4: ioco with refinement 200
B.4 Proofs Section 5.5: Test-case refinement 204

C Samenvatting 223

Bibliography 225

List of Figures

1.1 V-Model . 4

1.2 Model-Based Testing . 6

1.3 Schematic overview of a coffee machine 8

1.4 Video game specification with test-cases 9

2.1 Formal Conformance Testing Framework 13

2.2 Example of an IOLTS . 21

2.3 Process language example . 24

2.4 Examples of an IOA and IOTS 26

2.5 Example of the trace inclusion pre-order 28

2.6 Quiescent versus fair pre-order, Example 2.4.5 30

2.7 must testing example . 32

2.8 Example of ioconf . 34

2.9 Comparison between ioco and other relations 35

2.10 Example of a test-case . 38

3.1 Architecture of coffee machine in components 46

3.2 Specification of money and drink components as LTSs 48

3.3 Implementation of the money and drink components as IOTSs 49

3.4 Counter-example for parallel composition; see Example 3.3.2 51

3.5 Counter-example for hiding 52

3.6 Underspecification in ioco . 53

3.7 Demonic completion process 55

3.8 Demonic completion in combination with hiding 56

4.1 Video game example . 66

4.2 Refined video game example 67

4.3 Refinement transition systems for our video game example . . 68

4.4 Specification, implementation, refinement transition system
for navigation example . 70

4.5 Abstract and refined test-case for the navigation example . . 71

4.6 Abstract and refined calculator specification 71

4.7 Calculator refinement transition systems 72

4.8 Abstract and refined calculator test-cases 73

xi

4.9 Remote procedure call . 73
4.10 Refinement example of parameter abstraction 74
4.11 Abstract (part of) specification and test-case for the compo-

nent abstraction example . 74
4.12 Refined specification for component abstraction 75
4.13 Refined test-cases for component abstraction 76
4.14 Refinement transition systems for component abstraction . . 76
4.15 Specification, refinement transition system and test-case for

login example . 78
4.16 Specification, refinement transition system and test-case for

database example . 79
4.17 Refinement ingredients . 80
4.18 Simple action refinement example 81
4.19 Atomic versus non-atomic refinement 83
4.20 Example of an event structure 85
4.21 Refinement on event structures 86
4.22 Quiescence in test-cases . 87
4.23 Preservation of initiative example 89
4.24 Observability example . 90

5.1 Example of transitions in T1 96
5.2 Example of transitions in T2 96
5.3 LTS refinement: specification and refinement transition systems 97
5.4 LTS refinement step 1 . 97
5.5 LTS refinement step 2 . 99
5.6 Example mini-test-case generation 106
5.7 Skeleton building example . 109
5.8 Example of a non deterministic test-skeleton 110
5.9 Verdict assignment . 112
5.10 Verdict assignment in more detail 113
5.11 Example for delta preservation 116
5.12 Example for delta reflection 117
5.13 Observability constraint example 118
5.14 Observability constraint example, part two 118
5.15 LTSI model of Example 5.8.2 122
5.16 Non Atomic Refinement of LTSI 124
5.17 Abstract test-cases for non-atomic refinement example 125
5.18 Refined test-cases for non-atomic refinement example 126
5.19 Relaxed refinement example 127
5.20 Relaxed test-case refinement example 128

A.1 Automaton that accepts the regular set (U ∪ δ∗I)∗δ∗ 145

List of Tables

2.1 Formal Model-Based Testing ingredients 17
2.2 Transition rules for the process language operators 22

3.1 SOS rules for the new parallel composition operator 59

4.1 Classification of action refinement scenarios 93

5.1 Dependency relation for abstract system 123

xiii

Chapter 1

Introduction

S
ome two decades ago, during my studies, I1 came into contact with
the world of software testing for the first time. I was working on a piece

of software that was bigger than anything I had written before and it was
showing faulty behavior. How annoying! During my studies I had learned a
bit about software testing. However in practice there were not many tools
to help me, except for the debugger. With hard hard work, smart thinking
and the use of some home grown testing/debugging tools I managed to
solve my problems. Now, with some years of experience in the software
development world, I know that software testing is an extremely difficult
problem begging to be solved. One might even argue that the problem of
recognizing a correctly behaving system is at least as difficult as, if not more
difficult than building the system itself. The difficulty of software testing
and the fact that the software development world does not realize and/or
recognize this, is one of the main motivations for doing this research.

1.1 Why software testing is difficult

In this thesis we use a rather liberal notion of software: the instructions
for a machine to perform a certain functionality automatically. In general,
with instructions we mean a computer program written in some kind of
programming language and with machine we mean a computer, also known
as hardware. With “certain functionality”, we mean the functionality that
the program or machine was made for, for example electronic banking for
an electronic banking program, text editing for a word processor, dispensing
cash for an ATM, etc. Many machines these days have a computer inside
that runs software, for example the computer we use daily to check our
email and our cell-phone. Less trivial examples are television sets, cars and
electronic razors.

1This introduction sometimes reflects the personal opinions of the author. In those
cases we take the liberty to use the first-person singular.

1

Chapter 1. Introduction

With software testing we mean the activity of experimenting with the
software in order to find out if the software, or the software in combination
with the hardware, is functioning the way it is intended to do.

Testing software is an important activity, because it inspects the quality
of the software. There are also other techniques to inspect and improve the
quality of software, for example model-checking and theorem proving, but
testing is the technique most used in practice.

Testing software is difficult for at least two reasons. One is that it is
not always clear what the required functionality of the software is. The
other is the size and complexity of the software itself. To test a big part
of the intended functionality of a software system one may have to perform
thousands of tests, which easily takes several man weeks or man months.
There are two main reasons for the hugeness, one is the amount of possible
data combinations in a system and the other one is the amount of possible
interactions with the system. We illustrate these problems in the following
examples.

Example 1.1.1 Suppose we want to thoroughly test the addition function
of a calculator. Let us simplify this by only adding two numbers and by only
using integer values (whole numbers, i.e., no fractions) with only 8 digits.
And we simplify this test even more by only using positive numbers. This
means that we can choose numbers from 0 to 99999999, in other words 108

possible options. This means that there are 1016 combinations for the two
numbers. Suppose that every test takes 5 micro-seconds, this means that
completely testing the function takes around 20294 years (note that we are
only taking the test execution into account and leave out the creation of the
test-case and checking the outcome of the test). I think we all agree that
this is a lot of test-cases and a lot of time for only this small part of the
total functionality. 2

This may seem a trivial example. And what is the big deal with calcu-
lators, we all know that they work, right? Well, it took quite a while before
calculators worked with nowadays perfection, and also these days we some-
times run into problems that could have been detected, had we been able to
test more thoroughly. Remember the Pentium bug [Wol94] and the Ariane
5 software bug [Nus97]? And also do not forget that there are indeed more
complex systems, these are only integer calculations. Translate this “sim-
ple” case to more complex software, for example the administration system
of a pension provider, or the software for space exploration, like the Mars
Pathfinder.

The other issue with software testing is the amount of interactions that
are possible with software systems.

Example 1.1.2 Let us stick with our calculator example. Most calculators
have the possibility to correct wrong inputs by pressing a correction key;

2

1.1. Why software testing is difficult

quite often labeled ‘C’. This works as follows, when I want to enter the
number ‘10’, but by accident I start by pressing the number ‘2’, I can correct
this by pressing the ‘C’ button. The result is that the entered number resets
to ‘0’ and I can try again to enter the number. The effect is that there
are basically an infinite amount of possibilities to enter every number. For
example, when we want to enter the number ‘1’, we can press ‘1’, but we
can also press ‘2’, followed by ‘C’, followed by ‘1’, or ‘2’, followed by ‘C’,
followed by ‘1’, followed by ‘C’, followed by ‘1’, or . . .

This phenomenon does not only occur with calculators, but for example
also with web-based applications, where one can use the “back”-button to go
back to the previous page, or for example the back-button on your navigation
system. 2

The correction key is an example that increases the number of possible
interactions with a system dramatically. But even when we disregard the
correction keys and back-buttons of this world, nowadays systems are quite
complex to test. Take for example OpenOffice 2.4, an open source word
processor. On a quick inspection we find at least 139 menu items, some
of which have sub-menus and some of which can be combined with other
options.

With bigger and more complex systems the number of tests that we need
to test the system only gets bigger. In other words, the problem that we face
with software testing is that we want to assure the quality of a practically
infinite system in a finite amount of time. By hand, it is simply impossible.
Testing a relevant part of the system under test, simply calls for massive
automation of the entire test process. And even then we won’t come close to
the amount of tests that we theoretically need to execute. There are some
tools to automate test-case execution, but these still require the test-cases to
be written by hand. Examples are QTP by HP and Rational Robot by IBM
(see their respective websites, www.hp.com and www.ibm.com, for details,
this information changes from day to day). If only we could automate the
test-case generation part, this would mean that we could test a significantly
bigger part of the software.

A question often heard is whether we really need these big numbers in
practice? Well, yes and no. No, in practice we do not need these billions of
test-cases. It is impractical to execute them anyway, because we do not have
enough time. But more importantly, in most software we use only a core
set of functionality most of the time. We do not even remotely use all the
possible interactions with the system and neither do we use all possible data
combinations. Furthermore, most software is used for a finite amount of
time, for example, because the system is reset periodically. This also limits
the amount of possible test-cases. On the other hand the answer is yes. The
amounts of tests that we perform manually (in the tens or hundreds) are by
far not enough. Yes, we really need thousands of test-cases to thoroughly

3

Chapter 1. Introduction

unit
test

test
integration

test
system

test
acceptance

functional
design

design
technical

code

specification
requirements

Figure 1.1: V-Model

test a software system. The other day I saw at a client that our software [Axi]
found an error after 90.000 tests. So yes, practice shows that we really need
these big numbers.

On top of this, practice is that testers are at the bottom of the food chain
in the software development world: bad programmers become testers, new
hires start as testers, people with backgrounds that are not even remotely
related to computer science become testers. On top of the complexity of
testing, it does not help if testing is done by people not suited for the job.
Furthermore, in general software is not developed with testing in mind. Let
us take a bird’s eye view at how software is developed in practice.

1.1.1 Software development in the real world

I will quickly sketch how software is developed by using the so called “V-
model” in Figure 1.1. Note that my description here of the way how software
is developed is a gross oversimplification and at the same time a rather ac-
curate account of the way software is developed in practice (based on some
years of experience). For those interested in a more detailed description we
refer to [Pre04]. On the left-hand side of Figure 1.1 we see design activities
and on the right-hand side we see corresponding test activities. In gen-
eral, software development is started with a phase where domain specialists
(for example insurance specialists when building an insurance administration
system) talk with the customer, or the intended users of the software system.
These domain specialists write down what the system should do, the what,
from a perspective of the client. The document that captures the require-
ments of the system is generally called “requirements specification”. Based

4

1.1. Why software testing is difficult

on the requirements specification, software designers make a “functional de-
sign” that describes the system to be built from a functional perspective;
the how. Next there is a phase in which software engineers translate the re-
quirements and functional design into a technical description of the required
software system; the “technical design”. The next phase is the actual build-
ing of the system: the writing of code in a particular programming language
or environment for a specific platform. For bigger software systems this
means that the functionality is split up in smaller parts and distributed over
several programmers. The end of this phase should be the delivery of the ac-
tual software system that the client requested. That is easier said than done.
How do we recognize that the realized system is the one that the customer
wanted? There are several ways to do this, but the most used technique in
practice is testing. Testing means executing and using the software system
and (manually) checking if the system behaves as expected. When this is
done in a structured way, several tests are performed, as we can see on the
right-hand side of Figure 1.1 on the facing page: acceptance test, system
test, integration test and unit test. Best case, these tests are made during
system design, based on the available system documentation, so that they
can be executed when (parts of) the system are ready. Experience shows
that software projects are particularly bad at staying on schedule. By the
time the software is ready to be tested there is almost no time left to exe-
cute the test-cases, let alone prepare them. We describe the tests, starting
at the bottom with unit-tests and working our way up in the V-model. Unit
tests are used to check the parts (also known as units, hence the name) of
the system that the programmers made. In general these tests are done by
the programmer. When several units are ready we can integrate them and
check if they behave according to the “technical design”. When the system
is deemed to be correct from a technical perspective, a system test is per-
formed to check if the system behaves as described by the the “functional
design”. Last but not least the system is tested with or by the customer to
see if it complies with the original “requirements”, the so called acceptance
test.

In my experience as a software engineer, doing projects for financial
organizations, government and companies in the embedded system world,
most software testing is done manually: test-cases are written by hand,
they are executed by hand and the outcome of the test is checked by hand.
The good part about this is that if the manual testing is done the right
way, in accordance with the software development activities it can result in
decent quality software. The downside is that it takes a lot of time and
effort. Apart from the time to execute all the tests once, it often happens
that tests need to be rerun several times. This happens for example when
an error is corrected in a new release of the software and the fix needs to
be re-tested. Or when new functionality is added to the software and we
retest the existing functionality, to ensure that it is not negatively effected

5

Chapter 1. Introduction

MBT SUTModel

test case
generation

test case
execution

test cases

Figure 1.2: Model-Based Testing

by the new functionality. It is not uncommon that the same test needs
to be re-run between ten and twenty times for one release of the software.
Even with these “good” projects it often happens that serious bugs remain
in the software, simply because manual testing cannot cover enough of the
functionality of the system under test.

An interesting candidate testing solution to test with more test-cases
is Model-Based Testing (MBT). MBT is different from other approaches
because it can automatically generate test-cases. This is important, because
it makes it possible to come up with a significantly bigger set of test-cases
than possible by manual testing. The promise of MBT is not only that we
test the software more thoroughly, but also that we are able to test quicker,
repeatable and in a more flexible fashion. This makes it possible to give
software developers quick and thorough feedback, enabling them to shorten
their development cycle. This means that they can make better quality
software in shorter time.

1.2 Model-Based Testing

In Chapter 2 we introduce MBT in more detail, but in short MBT works
as follows (see Figure 1.2). The basis is a model, this is a functional de-
scription of the software system that we want to test (also known as System
Under Test, or SUT), similar to, but more structured than the requirements
specification and the functional design. Because the model is written using
a formal written notation, we can analyze it and derive test-cases from it.
We can store these test-cases in a database and execute them against the
system under test. Because the model describes the functionality of the
system under test we also know the allowed responses of the system to the
test-case, hence we can also automatically evaluate the outcome of the test.

The derived test-cases test if the software system complies with the func-

6

1.3. Research questions

tionality as defined in the model. Here of course lies an interesting aspect
of MBT. How do we know whether we have a correct model; quis custodiet
ipsos custodes? Note that this problem is not new, it also exists with manual
testing: how do we know whether a test-case is correct? In the traditional
setting we have documentation and domain experts as the basis for our
test-cases. With MBT we have some extra possibilities. We have the model
itself that can be reviewed by domain experts. With the right formal under-
pinning, the model is executable. Therefore we can simulate its behavior.
Furthermore there is also other research that focuses on these questions, for
example research in model checking [BK08]. In this thesis we assume that
we have a correct model. We focus on the situation that eventually the
model and/or the test-cases will change. This is not a problem, but a fact
of life. It is also our experience when applying model-based testing in prac-
tice. Models and test-cases change, for example when we find differences in
granularity between the model and the system under test. Actions in the
model are implemented slightly differently in the system under test than
what was described in the specification, or another possibility is that in the
model we abstracted from functionality that turns out to be necessary to
test the system. In this thesis we look at ways to use and change models
and test-cases in a flexible way. Our research questions are centered around
modular design and action refinement.

1.3 Research questions

Modular design means that we split the functionality of the entire system
into smaller coherent parts. Because these parts are smaller, they are easier
to model, to maintain and to test. This technique, also known as “divide and
conquer”, is a well known engineering technique. Think for example of the
way an automobile is split up into coherent parts: the engine, the body work,
the suspension, etc. We investigate modular design and modular testing for
MBT in Chapter 3. The research question treated in this chapter is:

• Given that components (individually) have been tested and found cor-
rect, may we conclude that their integrated behavior is also correct?
If this is the case it would imply that we only have to test the parts
of a system and not the system as a whole!

In system modeling, modular design has been investigated extensively,
for example in several process algebraic formalisms, but in MBT this has
not been the case. We illustrate testing modular design, also known as
component based testing, in the following example. As is the tradition in
model-based testing at the University of Twente, the example is a coffee-
machine.

7

Chapter 1. Introduction

drinkmoney

error

make tea
make coffee

0.50, 1.00

0.50, 1.00

coffee, tea

Figure 1.3: Schematic overview of a coffee machine

Example 1.3.1 In Figure 1.3 we schematically show a coffee-machine. The
specification of the machine is extremely simple, it works as follows: when
we enter 50 cent we get a cup of tea and when we enter 1 euro we get a
cup of coffee. When something goes wrong in the drink making process
we get our money back. The machine consists of two parts, a part that
takes care of the money and a part that takes care of the drinks. When
the money component receives 50 cent, it gives a make tea command to the
drink component. And after receiving the command, the drink component
delivers tea. Likewise it produces coffee after the make coffee command.
When something goes wrong in the drink component it gives an error signal
to the money component, which gives the inserted money back. 2

The million dollar question is: if we test the money and drink com-
ponents completely and find them correct, does that mean that the entire
coffee machine is correct? The shortest answer is no, the longer answer is
yes under certain conditions. This longer answer is treated in Chapter 3.

Modular design makes it easier to create and maintain models but at a
certain moment models change, or the test-cases that were generated from
these models change. Is there a way to keep the models and test-cases
aligned? We could of course make the changes by hand, but this often turns
out to be an error prone and laborious exercise. More importantly, we want
to be able to change already derived test suites in such a way that they are
still correct with respect to the changed model. This means that we have to
change the model as well as the test-cases. If possible, we would like to do
this automatically in a controlled manner. Model transformation is a tech-
nique that makes it possible to change behavior of a system in an automatic
way by adding or removing functionality. An interesting model transforma-
tion technique for MBT is action refinement [GR01]. This technique has
been studied in model design but it is unclear how action refinement works
for MBT. Especially it is unclear how to apply action refinement to test-
cases. We study action refinement for model-based testing in Chapter 5.
The research questions treated in this chapter are:

• How can we refine models and test-cases with inputs and outputs?
The theories found in the literature do not make this distinction.

8

1.3. Research questions

?play?refund

?¤3

specification

!¤3 !game
!¤3

!play

?¤3

pass failfail

test case

?δ?game

!¤2

!play

?¤3

pass failfail

?δ?game

refined test case

!¤1

Figure 1.4: Video game specification with test-cases

• Suppose we refine a set of test-cases that is derived from a model.
Likewise we refine the model and generate a set of test-cases. What
can we say about the relation between the set of refined test-cases and
the set of test-cases derived from the refined model?

Example 1.3.2 On the left-hand side in Figure 1.4 we show the state ma-
chine of a video game. The black dots are states, the start state has a short
incoming arrow that is not connected to another state, the arrows denote
transitions. Question marks denote input actions and exclamation marks
output actions. Together this reads as follows: we enter 3 euro and then we
may press the play button and play the game, or we may press the refund
button to get our money back. With MBT we can automatically gener-
ate test-cases from this specification, for example the one in the middle of
Figure 1.4. This one reads: enter 3 euro, press the play button and make
an observation (this is the fork in the tree). The only correct answer is
the observation of the game (pass). The observation of 3 euro, or nothing
(represented by the symbol δ) leads to a fail verdict.

The thing is, there do not exist 3 euro coins. In other words we need
to make it more explicit what we mean with 3 euro. Suppose for example,
that with 3 euro we mean: 1 euro followed by 2 euro or 2 euro followed by 1
euro. With this information, we want to refine (read enhance) our test-case
to the test-case shown on the right-hand side of Figure 1.4. This test-case
reads: after entering 1 euro followed by 2 euro and pressing the play key,
only game is a correct response of the system. Other responses lead to a fail
verdict. 2

9

Chapter 1. Introduction

1.4 Overview of the thesis

This thesis is part of the research in model-based testing. In Chapter 2
we introduce model-based testing. In Chapter 3 we show under which re-
strictions modular design works for model-based testing. Action refinement
in model-based testing is introduced in Chapter 4. Here we explain what
action refinement is and what problem we hope to solve by applying action
refinement to model-based testing. In Chapter 5 we present our action re-
finement theory for model-based testing. We end with our conclusions in
Chapter 6.

10

Chapter 2

Model-Based Testing

In this chapter we make clear what we mean by model-based testing and we
introduce the ioco test theory that we use, including test-case generation
and execution.

2.1 Introduction

M
ost of the “real world” testing of software systems is done by
hand. Testers specify test-cases by hand, execute them by hand and

evaluate the outcome by hand. They get the necessary knowledge for the
test-cases by reading system documentation, by talking to future users and
designers of the system and by using their experience. One could say that
the quality of the tests depends mainly on the skill of the tester.

Model-Based Testing (MBT) aims at automating the process of specify-
ing and executing test-cases, and evaluating the outcome of the test execu-
tion. A unique property of MBT compared to other test approaches is that
it enables the automatic generation of test-cases. Central in the approach
is that the desired system functionality1 is specified in a formal, i.e., math-
ematical model. From a practical perspective, a model is formal enough
if it can be manipulated automatically in order to construct test-cases; in
this sense a computer program may be a formal model. MBT uses a notion
of correctness (also known as implementation relation) together with the
information in the model to derive test-cases. This means that with MBT
the quality of the test-cases depends on the quality of the model and the
quality of the algorithm to derive test-cases from the model. In the world of
MBT, or more specifically the realm of testing reactive systems, there are
basically two formalisms used, those based on Finite State Machines (FSM)
and those based on Labeled Transition Systems (LTS). FSM based testing

1We use the term functionality here in a broad sense: “the desired behavior of the
system”, this may include so-called extra-functional behavior like performance, security,
etc.

11

Chapter 2. Model-Based Testing

has a long tradition: already in 1956, Moore wrote a seminal paper about
it [Moo56] in which he introduced the idea of experimenting with an FSM
to draw conclusions about its internal state. For an annotated bibliography
on FSM testing see [Pet00], for more information see [BJK+05, LY96]. The
formal testing theory on which LTS based testing is based was introduced
by De Nicola and Hennessy in 1984 [DNH84]. For an annotated bibliogra-
phy on LTS based testing see [BT00]. Because MBT enables the automatic
generation and execution of test-cases and the evaluation of the outcome of
tests, it makes it possible to test more thoroughly and possibly cheaper than
by manual testing.

Before we start talking about model-based testing, we want to make more
precise what kind of software testing game we are in. The work in this thesis
is in the tradition of LTS based testing. To be more precise, our research
is in the tradition of conformance testing [BAL+90, Tre94, ISO96, Tre99]
and uses the ioco test theory of Tretmans [Tre96b, Tre08]. We favor LTS-
based testing because we find it poses less restrictions on the model we use.
For example FSM-based testing requires deterministic systems, synchronous
communication of input and output actions and it needs an estimate of the
number of states in the implementation [LY96]. We are aware of efforts
to lift or lessen these restrictions, but to our knowledge, so far they come
with the price of other or extra restrictions [Pet00]. Relevant for this thesis,
FSMs require extra effort to support parallel composition (due to the nature
of the coupling of input and output actions on a transition). LTSs support
parallel composition in a simple and elegant way (see Section 2.3.2). This
is not the case for ioco, as we will find out in the next chapter.

The aim of this chapter is to introduce the concepts and ideas used in
(formal) model-based testing and especially the concepts used in the ioco
theory. We put the ioco theory into perspective with respect to other the-
ories, by treating some test theories that influenced the ioco theory. The
purpose of this chapter is to give all the background necessary to read this
thesis. It is organized around the concepts of model-based testing in the
following way: we introduce several classes of label transition systems in
Section 2.3, ioco and several other notions of correctness in Section 2.4 and
test-cases in Section 2.5. A good portion of the material in this chapter is
reused from the chapter “I/O Automata Based Testing” written together
with F. Peureux [vdBP04] for the book Model-based testing of reactive sys-
tems [BJK+05]. We start with a framework by Tretmans to introduce formal
methods in conformance testing [Tre02].

2.2 Framework for conformance testing

In this section we present a framework, depicted graphically in Figure 2.1 on
the facing page, for conformance testing. Our aim is to introduce and for-

12

2.2. Framework for conformance testing

derivation

execution

test

test

conforms-to

verdict

specification

implementation test suite

Figure 2.1: Formal Conformance Testing Framework

malize the MBT concepts that we will use in this thesis. In the figure we see
the objects: specification, implementation, test suite, verdict, and the activ-
ities: test derivation and test execution. We also see a conformance relation
between the specification and the implementation. This relation expresses
under what conditions the implementation conforms to, i.e., is correct with
respect to the specification. In order to find out if an implementation con-
forms to a specification we perform experiments on the implementation. In
the world of hardware and software testing we call these experiments tests;
we call the specification of a test a test-case. A collection of test-cases is
called a test suite. With the aid of a test derivation algorithm we derive
test-cases from the specification. The execution of a test-case leads to a ver-
dict whether the implementation conforms to the specification. We identify
two verdicts: pass and fail.

Conformance is a notion of correctness between a specification and an im-
plementation. In our formal framework we use formal specifications, i.e.,
mathematical objects. We refer to a formal specification by spec and
we denote the universe of formal specifications by SPECS . Implementa-
tions are real world entities, in general hardware/software combinations.
They are the systems that we are going to test and we refer to them
as iut (Implementation Under Test). We denote the universe of iuts as
IMPS (Implementations). Conformance could be introduced as a relation
conforms-to ⊆ IMPS × SPECS , with ‘iut conforms-to spec’ expressing

13

Chapter 2. Model-Based Testing

that the iut is a correct implementation of the specification spec. However
is is impossible to give a formal definition of conforms-to as iuts are not
formal objects. In order to reason formally about implementations we make
the assumption that any real implementation iut ∈ IMPS can be modeled
by a formal object iiut ∈ MODS , where MODS is the universe of imple-
mentation models. This assumption is known as the test hypothesis [Ber91].
It is a necessary theoretical step to connect the formal and physical world.
For practical testing we do not have to identify this model, i.e., the element
in MODS , concretely for a given implementation to test it.

The test hypothesis makes it possible to express conformance as a for-
mal relation between models of implementations and specifications. Such
a relation is called an implementation relation: imp ⊆ MODS × SPECS
[BAL+90, ISO96]. We say that implementation iut ∈ IMPS is correct
with respect to specification spec ∈ SPECS (iut conforms-to spec), if
and only if the model of the implementation, iiut is imp-related to spec:
iiut imp spec; formally:

iut conforms-to spec⇔ iiut imp spec

Testing is the execution of test-cases on the implementation. We denote
the universe of test-cases by TESTS . We denote the execution of a test-case
t ∈ TESTS on an implementation iut ∈ IMPS by EXEC (t, iut). During
test execution we stimulate the iut with actions, for example by pressing a
button on a keyboard, and as a result we may observe responses from the
iut. We denote the domain of all observations by OBS . Test execution
EXEC (t, iut) results in a subset of OBS . We use 2OBS to denote the set of
subsets of OBS .

EXEC (t, iut) takes place in the physical world. In order to reason for-
mally about test execution we model this process in our formal domain.
We do this by introducing a formal observation function obs : TESTS ×
MODS → 2OBS . So obs(t, iiut) formally models the real test execution
EXEC (t, iut). Now we can state more precisely what we mean with the
test hypothesis: For all iut in IMPS there exists a model iiut in MODS
such that for t ∈ TESTS EXEC (t, iut) equals obs(t, iiut)

In words this states: for all physical implementations, it is assumed
that there is a model of this implementation, such that if we execute all
tests in TESTS , then we cannot distinguish the implementation from the
model. This notion is analogous to the ideas underlying testing equiva-
lences [DNH84, DN87].

In order to explain the testing concepts in a straightforward and concise
manner we swept some details under the rug. As the observant reader has
probably noticed, we use the test-cases in TESTS , the observations in OBS
and the specifications in SPECS in the physical and the formal world. A

14

2.2. Framework for conformance testing

more correct approach would be to distinguish the formal objects from the
physical objects, like we did for the implementation. We could do this, but
we find that it makes our explanation unnecessarily complex.

The purpose of test execution is to give a verdict about the correctness of
the iut. To reason formally about verdicts we introduce a verdict function
verd : TESTS × 2OBS → {pass, fail}. This verdict function expresses for a
certain test t which observations are correct. It is common to talk in terms
of verdicts on test-cases instead of observations. We say that an iut passes
a test-case t if the verdict of the test execution is pass. We define this
formally as follows:

iut passes t =def verd(t,EXEC (t, iut)) = pass

Likewise we write iut fails t to denote iut /passes t (we take the liberty
of denoting negation by slashing).

Conformance testing In conformance testing we use an implementation
relation as a formal notion of correctness to judge if an implementation con-
forms to its specification. With this implementation relation we can derive
test-cases with verdicts from the specification. We execute the test-cases
against the iut in order to check if the iut conforms to the specification.
To put this approach into practice we link the notions of conformance and of
test execution (expressed by EXEC) in such a way that test execution gives
us an indication of conformance. Ideally, given specification spec ∈ SPECS ,
we would like to have a test suite T ⊆ TESTS such that the following holds:

iut conforms-to spec⇔ iut passes T

A test suite with this property is called complete. It can distinguish ex-
actly between all conforming and non-conforming implementations. In prac-
tice a complete test suite is very big if not infinite. The cause is primarily
in the right-to-left implication of the formula, which we call exhaustiveness.
It states that we have a conforming iut if it passes the test suite. In other
words the test suite needs to take all possible errors into account, these may
be very many (remember the calculator example from the introduction of
this thesis). The implication from left to right is called soundness. Sound-
ness is an important requirement. It states that if a test-case reports a
failure, then we really have a non-conforming implementation (i.e., there is
an error in the implementation).

An important activity in conformance testing is test-case derivation. For-
mally, test derivation can be seen as a function der : SPECS → 2TESTS .
Such a function should produce at least sound test suites and if possible
exhaustive test suites. Exhaustiveness in practice often requires an unlim-
ited amount of time and resources. Nonetheless, we do find this property
important because it does not a priori leave out important test-cases. From

15

Chapter 2. Model-Based Testing

a theoretical perspective, if we let run an exhaustive test-generation proce-
dure ad infinitum, we might call it limit-complete. We find this better than
a procedure that is incomplete even in the limit.

From a practical point of view it is mostly impossible to say if an imple-
mentation conforms to a specification, because we need a complete test suite.
In the case that such a test suite is (practically) infinite we cannot answer
the conformance question. Hence the famous quote by Dijkstra (already in
1969) that “testing can be used to show the presence of bugs, but never to
show their absence” [Dij69]. So what is the practical use of conformance
testing? The best we can do in practice is to have a sound test suite with
a good coverage of the functionality. Practice shows that when a system
passes a test suite with a good coverage, this is an indication that there are
no obvious mistakes in the system. A test suite with a good coverage is
in most cases still a very big test suite and humans are notoriously bad in
creating good test suites. We find that the conformance testing theory gives
a good basis to construct these kind of test suites.

Conclusion We have treated the parts of the formal testing framework
individually. We briefly want to recapitulate how the parts of the framework
work together.

• We have a formal specification spec that describes the desired behav-
ior of the software system.

• We have an implementation iut. To make the test theory work, we
assume that it can be adequately represented by a formal model.

• We want to know if the iut is a conforming, in other words correct,
implementation of spec. In order to find out if the iut is correct we
execute test-cases against the iut.

• We use the information in spec in order to generate test-cases. Im-
portant properties of test suites are soundness, exhaustiveness and
completeness. Only a complete test suite can distinguish between all
conforming and non-conforming implementations.

• We execute the generated test suite against the iut.

• Based on the observations of the test execution we give the verdict
pass or fail.

In Table 2.1 we give an overview of the concepts.

16

2.3. Labeled transition system models

Physical ingredients:

Black box implementation iut ∈ IMPS
Execution of a test EXEC (t, iut)

Formal ingredients:

Specification: spec ∈ SPECS
Implementation model iiut ∈ MODS
Implementation relation: imp⊆ MODS × SPECS

Test-case: t ∈ TESTS
Test suite: T ∈ 2TESTS

Observations: OBS
Formal test execution: obs : TESTS ×MODS → 2OBS

Verdict: pass, fail
Verdict function: verd : TESTS × 2OBS → {pass, fail}
Test derivation: der : spec→ 2TESTS

Assumptions:

Test hypothesis: iut can be modeled by iiut ∈ MODS
obs(t, iiut) models EXEC (t, iut)

Proof obligation:

Soundness: iut fails T ⇒ ¬(iut conforms-to spec)
Exhaustiveness: iut passes T ⇒ iut conforms-to spec

Table 2.1: Formal Model-Based Testing ingredients

2.3 Labeled transition system models

In this section we present formalisms for specifications and implementations.
Our research is in the tradition of testing with Labeled Transition Systems
(LTS), therefore all our formalisms are based on LTSs.

We introduce the general LTS model and a variant of the LTS model, the
IOLTS, that distinguishes inputs and outputs together with some standard
notation and definitions in Section 2.3.1. To create systems directly with
the LTS model can be a laborious exercise. In Section 2.3.2 we introduce
a process language that makes it easier to create and notate large systems.
In Section 2.3.3 we present two types of transition systems to model imple-
mentation behavior.

17

Chapter 2. Model-Based Testing

2.3.1 Labeled transition systems

A labeled transition system (LTS) is defined in terms of states and labeled
transitions between states, where the labels indicate what happens during
the transition. Labels are taken from a countable global set L; these are so
called observable actions. We use a special label τ /∈ L to denote an internal
or hidden action. For arbitrary L ⊆ L, we use Lτ as a shorthand for L∪{τ}.

Definition 2.3.1 [Labeled Transition System] A labeled transition system
is a 4-tuple 〈Q,L, T, start〉, where

• Q is a countable, non-empty set of states;

• L ⊆ L is a countable set of labels;

• T ⊆ Q× Lτ ×Q is the transition relation;

• start ∈ Q is the start state.

In this thesis we use LTSs that make a distinction between input and
output actions. We call such a system an Input Output Labeled Transition
System (IOLTS). When the (input-output) context is clear we may use the
term LTS for an IOLTS.

Definition 2.3.2 [Input Output Labeled Transition System] An IOLTS is
an LTS where the label set L is partitioned into an input label set I and
an output label set U . Formally it is a 5-tuple 〈Q, I, U, T, start〉 where Q is
a countable, non-empty set of states; I ⊆ L is the countable set of input
labels; U ⊆ L is the countable set of output labels, which is disjoint from I;
T ⊆ Q× (I ∪U ∪ {τ})×Q is the transition relation; start ∈ Q is the initial
state.

We use L as shorthand for the entire label set (L = I ∪ U) and we use
Qs, Is etc. to refer to the components of an (IO)LTS s. We commonly write
q µ−→ q′ for (q, µ, q′) ∈ T . We use a question mark before a label to denote
that the label is an input action and an exclamation mark to denote that
the label is an output action. We denote the class of all labeled transition
systems over L by LTS(L), likewise we denote the class of all IOLTSs over
I and U by IOLTS(I, U). We represent a labeled transition system in the
standard way, by a directed, edge-labeled graph where nodes represent states
and edges represent transitions (see Example 2.3.6 for an example).

A state from which no internal action is possible is called stable. A stable
state from which no output action is possible is called quiescent. We use
the symbol δ (6∈ Lτ) to represent quiescence: that is, q δ−→ q stands for the
absence of any transition q x−→ q′ with x ∈ Uτ . For an arbitrary L ⊆ L, we

18

2.3. Labeled transition system models

use Lδ as a shorthand for L ∪ {δ}. Likewise we use Lτ as a shorthand for
L ∪ {τ}. The notation δ(q) denotes that the state q is quiescent.

An LTS is called strongly convergent if it does not have infinite compo-
sitions of internal actions; in other words, if it does not have any infinite
τ -labeled paths. For technical reasons we restrict the fragment we use of
IOLTS(I, U) to strongly convergent transition systems (this is a restriction
of the ioco theory).

A trace is a finite sequence of observable actions. The set of all traces
over L (⊆ L) is denoted by L∗. When δ and/or τ are part of the label set we
show this explicitly by using subscripts; for example the set of traces L∗δτ =
(L ∪ {δ, τ})∗ for some L ⊆ L. Traces are ranged over by σ, with ε denoting
the empty sequence. We will use Σ to denote a set of traces. If σ1, σ2 ∈ L∗,
then σ1·σ2 is the concatenation of σ1 and σ2. Concatenation is extended
in the standard way to sets of traces, denoted by Σ1·Σ2 (with Σ1, Σ2 sets
of traces). We use the standard notation with single and double arrows for

traces: q λ1···λn−−−−−→ q′ denotes q λ1−−→ q1 · · · qn−1
λn−−→ q′, q

ε
=⇒ q′ denotes q τ ···τ−−−→ q′

and q
λ1···λn=====⇒ q denotes q

ε
=⇒ λ1−−→ ε

=⇒ · · · λn−−→ ε
=⇒ q′. We write q µ−→ as a

shorthand for ∃q′ ∈ Q : q µ−→ q′. We lift this notation in a straightforward
manner to traces and the double arrow notation. An execution fragment
of a transition system s is a sequence of alternate states and actions α =
q0a1q1a2q2 . . ., starting with a state and if the execution fragment is finite
ending with a state, where each (qi, ai+1, qi+1) ∈ Ts for i ≥ 0. An execution
is a fragment that starts in the start state. When we refer to the trace of an
execution (fragment), we mean the execution (fragment) without the states
(the result is a trace). When it does not lead to confusion we will not always
distinguish between a labeled transition system and its initial state. We will
identify the system s = 〈Q, I, U, T, start〉 with its initial state start, and we
write, for example, s

σ
=⇒ q1 instead of start

σ
=⇒ q1. In Definition 2.3.3 we

repeat some standard definitions for LTSs, likewise in Definition 2.3.4 for
IOLTSs.

Definition 2.3.3 Let s = 〈Q,L, T, start〉 ∈ LTS(L), σ ∈ L∗δ , q ∈ Q and
Q′ ⊆ Q.

• init(q) =def {µ ∈ Lτ | q µ−→}

• q after σ =def {q′ | q
σ

=⇒ q′}

• Q′ after σ =def
⋃
q′∈Q′(q

′ after σ)

• traces(s) =def {σ′ ∈ L∗ | s
σ′

==⇒}

• s is deterministic if forall σ′ ∈ L∗δ , s after σ′ has at most one element.

• s has finite behavior if there is a natural number n, such that the
length of all traces in traces(s) is smaller than n.

19

Chapter 2. Model-Based Testing

init(q) is the set of initial actions of a state q. q after σ is the set of states
reachable from state q by performing the trace σ. traces(s) is the set of
traces that an LTS s can perform. A transition system is deterministic if no
more than one state is reachable with a trace. This means that if there is a
trace σ that leads to two or more states, starting in a state q, the system is
not deterministic. These definitions are extended in a straightforward way
to IOLTSs.

Definition 2.3.4 Let s = 〈Q, I, U, T, start〉 ∈ IOLTS(L), σ ∈ L∗δ , q ∈ Q
and Q′ ⊆ Q.

• qtraces(s) =def {σ′ ∈ L∗ | ∃q′ ∈ Q : s
σ′

==⇒ q′ ∧ δ(q′)}

• Straces(s) =def {σ′ ∈ L∗δ | s
σ′

==⇒}

• out(q) =def {x ∈ Uδ | q
x

=⇒}

• out(Q′) =def
⋃
q∈Q′ out(q)

qtraces are traces that end in a quiescent state. Straces(s) are the suspension
traces that an LTS s can perform. Suspension traces are traces that may
include the action δ. out(q) is the set of outputs, including quiescence, pos-
sible in state q, or after ε. The out definition is extended in a straightforward
manner to sets of states.

Projection is a way to remove unwanted labels from a trace. In the
definition below, labels in Σ are untouched and labels not in Σ are replaced
by ε.

Definition 2.3.5 [Projection] Let λ ∈ Lτδ,Σ ⊆ Lτδ.

λ�Σ =

{
ε if λ /∈ Σ
λ otherwise

We extend the definition of projection to traces in the following way. Let
σ = λ1 · · ·λn for some n ≥ 1 with ∀1 ≤ i ≤ n : λi ∈ Lτδ. (λ1 · · ·λn)�Σ =
(λ1�Σ · · ·λn�Σ)

Example 2.3.6 In Figure 2.2 on the next page we show an example of an
IOLTS s. It models the behavior of a coffee machine. After we press button1,
an internal step is executed (for example heating the water, or initializing
the machine) and we get a cup of coffee. Likewise, when we press button2
we get a cup of tea. Formally, s = 〈Q, I, U, T, start〉 with:

• Q = {q0, q1, q2, q3, q4, q5, q6}

• I = {button1, button2}

• U = {coffee, tea}

20

2.3. Labeled transition system models

?button2?button1

τ τ

!tea

q0

q1

q2

q4

q5

q6q3

!coffee

s

Figure 2.2: Example of an IOLTS

• T = {(q0, button1, q1), (q1, τ, q2), (q2, coffee, q3), (q0, button2, q4),
(q4, τ, q5), (q5, tea, q6)}

• start = q0

The state q0 is stable and quiescent (δ(q0)) as there are no outgoing τ and

output transitions. We write s button1·τ ·coffee−−−−−−−−−−→ q3 and when we want to ab-
stract from τ actions we may write s

button1·coffee
=========⇒ q3. The initial actions

of s are: init(s) = {button1, button2}. For the set of traces and suspension
traces we have traces(s) = {ε, button1, button2, button1·coffee, button2·tea}
and Straces(s) = traces(s) ∪ δ∗ ∪ δ∗·button1·coffee·δ∗ ∪ δ∗·button2·tea·δ∗.
start after button1 = {q1, q2}. When we combine the definitions of out and
after we get out(s after button1) = {coffee}. 2

Note that in Figure 2.2 we show the state names in the state. When we
abstract from state names, we represent states by black dots.

2.3.2 Representing labeled transition systems

Except for relatively small systems, a representation by graphs or trees, like
with LTS models, is laborious. “Real world” systems easily have thousands
of states which makes drawing them practically impossible. A standard
way to represent an LTS is a process (algebraic) language. In this thesis
we sometimes use processes to model system behavior. In this section we
introduce the syntax and semantics of our process language, which is a
variant of the language Lotos [BB87, ISO89]. A more detailed treatment
of process algebras can be found in [Hoa85, Mil89, BB87, ISO89]. It is
not our intention to use this language in a mathematical way and to prove
properties of it. Our main purpose is to have a convenient and concise
notation for LTSs.

Before we treat the syntax and semantics of our language, we start with
its parameters. We distinguish actions and process names. Similar to LTSs

21

Chapter 2. Model-Based Testing

Operator Transition rules

a;B
a;B a−→B

ΣB ∃B ∈ B : B µ−→B′

ΣB µ−→B′

hide V inB
B µ−→B′, µ ∈ V

hide V inB τ−→hide V inB′
B µ−→B′, µ /∈ V

hide V inB µ−→hide V inB′

B1 ‖G B2
B1

µ−→B′1, µ /∈ G
B1 ‖G B2

µ−→B′1 ‖G B2

B2
µ−→B′2, µ /∈ G

B1 ‖G B2
µ−→B1 ‖G B′2

B1
µ−→B′1, B2

µ−→B′2, µ ∈ G
B1 ‖G B2

µ−→B′1 ‖G B′2

P := B
B µ−→B′

P µ−→B′

stop no rules

Table 2.2: Transition rules for the process language operators

we assume a fixed, countable universe of actions and distinguish the internal
action τ . A process name allows us to refer to processes by name.

We define a set of behavior expressions B(L) over L. We use LB to refer
to the label-set of behavior expression B. We assume the label-set to be
fixed when the behavior expression is created, i.e., the label-set does not
change during the lifetime of a behavior expression. We use the following
syntax for a behavior expression B, let B be a set of behavior expressions,
where a ∈ L ∪ {τ}:

B =def a;B | ΣB | hide V inB | B1 ‖G B2 | P := B | stop

In Table 2.2 we show the operational semantics for our process lan-
guage in the Structural Operational Semantics (SOS) style introduced by
Plotkin [Plo81]. It describes the transition rules to go from one state to
another (and hence to build an LTS). At the end of this section we give an
example how to come from a process definition to a transition system.

Action prefix Action prefix is denoted by ‘;’. The expression a;B with
a ∈ Lτ describes the behavior that can perform the action a and then
behaves as B. The SOS rule for action prefix prescribes that the process
a;B can make a transition to process B. In other words we can interpret
a;B as a transition system that can make a transition labeled with a and
continue as process B.

Choice ΣB, where B is a countable set of behavior expressions, denotes a

22

2.3. Labeled transition system models

choice of behavior. It behaves as any of the processes in B. We use the
operator ‘+’ to denote choice between two behavior expressions. The SOS
rule for choice says that the system ΣB can make a transition with action a
to B′ if there is a process in B ∈ B such that B a−→B′.

Hiding For a set of actions V and a process B, the expression hide V inB
means that the actions in label set V are hidden in process B. This means
that if B can do a transition with a label x ∈ V , the action becomes invisible.
Actions not in V remain visible.

Parallel composition B1 ‖G B2, where G ⊆ L, denotes the parallel com-
position of B1 and B2. In this parallel composition all actions in G must
synchronize, i.e., they must occur in both processes at the same time. All
actions not in G (including τ) are interleaved, i.e., they can occur indepen-
dently in both processes.

We use ‖ as an abbreviation for synchronization on the actions in the
intersection of the label sets of the processes involved. This means that
B1 ‖ B2 = B1 ‖G B2 with G = LB1 ∩ LB2 . In this thesis we primarily use
parallel composition with systems with input and output actions. In that
case we synchronize inputs with outputs: G = (IB1 ∩ UB2) ∪ (UB1 ∩ IB2),
where we assume that IB1 ∩ IB2 = UB1 ∩ UB2 = ∅. The synchronized result
is an output action. The signature of the resulting system B1 ‖G B2 has
I = (IB1 ∪ IB2)\G and U = UB1 ∪ UB2 .

Inaction A process that does nothing is denoted by stop. It amounts to
deadlock. Sometimes the notation Σ∅ is used in the literature to define
inaction.

Process instantiation Process definition assigns a process name to a be-
havior expression. Process definition P behaves as B, where P is defined
by P := B. Process definition makes it easier to refer to a more complex
behavior expression, including recursive and repetitive behavior.

Example 2.3.7 Suppose we want to model the coffee machine in Figure 2.2
on page 21 in the presented process language. We can do this as follows. We
identify two parts, one for producing coffee and the other for producing tea.
The coffee making process is defined by pressing button1, followed by some
internal action, after which coffee is produced. We can model this by C :=
button1; τ ; coffee; stop. We show the transition system for C on the left-hand
side in Figure 2.3 on the following page. Next to the transitions we show the
actions and next to the states we show the behavior expression (in a smaller
font). We can read the first transition as follows (application of the ac-

tion prefix rule in Table 2.2): button1; τ ; coffee; stop button1−−−−−→ τ ; coffee; stop.
Likewise we can model the tea making process by T := button2; τ ; tea; stop.

23

Chapter 2. Model-Based Testing

TC M

τ ; !coffee; stop

?button1; τ ; !coffee; stop

!coffee; stop

stop

τ

!coffee

?button1 ?button2

τ

!tea

?button2?button1

τ

!coffee !tea

τ

Figure 2.3: Process language example

We show the corresponding transition system for this process in the middle
of the figure (we only show the actions for T , not the states). We combine
the coffee and tea making processes into one coffee machine M by using the
choice operator: M := C + T . This results in the transition system on the
right-hand side. 2

2.3.3 Input-enabled transition systems

An (IO)LTS is in general used to model specification behavior. There are
limitations to using an (IO)LTS as a model for implementation behavior: an
(IO)LTS can block inputs from the environment. Blocking of an input action
occurs in an (IO)LTS when we enter a state that has no outgoing transitions
for this action, as a result we cannot process the input action. For many
implementations blocking is unwanted or unrealistic behavior, for example
we can always press a button on our TV remote control and we can always
send a command when using a communication protocol. To remedy this
problem, input-enabled models were invented. These models are in principle
transition systems with a special property, that inputs from the environment
cannot be blocked. In this section we treat two input enabled models. For
this thesis, the Input Output Transition System by Tretmans [Tre96b] is the
important model. It was influenced by the Input Output Automata (IOA),
introduced by Lynch and Tuttle [LT89].

The general notion underlying these models is the distinction between
actions that are locally controlled and actions that are not locally controlled.
Output and internal actions of a transition system are locally controlled.
This means that these actions are performed autonomously, i.e., independent
of the environment. Inputs on the other hand, are not locally controlled;
they are under control of the environment. This means that the system
can never block an input action; this property is called input-enabledness
or input-completeness. We distinguish two variants of input-enabledness:
strong and weak input-enabledness. Strong input-enabledness requires that
all input actions are enabled in all states. Weak input-enabledness requires

24

2.3. Labeled transition system models

that all input actions can be performed from all stable states.

Input-output automata The input-output automaton was introduced by
Lynch and Tuttle in 1987 [LT87], [LT89]. An automaton’s actions are clas-
sified as either ‘input’, ‘output’ or ‘internal’. Communication of an IOA
with its environment is performed by synchronization of output actions of
the environment with input actions of the IOA and vice versa. Because
locally controlled actions are performed autonomously, it is required that
input actions can never be blocked. Therefore an IOA is input enabled (it
can process all inputs in every state). In order to compare the models we
use a uniform presentation (based on the IOLTS notation). As a result our
notation for the IOA model differs from the notation found in the literature.

Definition 2.3.8 [I/O automaton] An I/O automaton s = 〈Q, I, U,H, T,
start, P 〉, where:

• Q is a set of states,

• start ∈ Q is the start state,

• I ⊆ L is a set of input actions,

• U ⊆ L is a set of output actions,

• H ⊆ L is a set of internal (or Hidden) actions. H ∩ I = H ∩ U = ∅.
A transition q1

a−→ q2 with q1, q2 ∈ Q and a ∈ H manifests as q1
τ−→ q2

in the IOLTS.

• T ⊆ Q× (I ∪ U ∪H)×Q is the transition relation.

• P is an equivalence relation that partitions the set of locally controlled
actions U ∪H into at most a countable number of equivalence classes.

• s is strongly input-enabled. Formally: ∀q ∈ Q, a ∈ I : q a−→

An IOA is an IOLTS with the exception that it has a set of internal
actions H, an equivalence relation P , and is input-enabled. The set of in-
ternal actions is not observable by the environment, but works otherwise
like the other actions (an IOLTS abstracts all internal actions to τ actions).
The equivalence relation P is only used in the definition of fair computa-
tion that is used in the fair pre-order (Definition 2.4.3); we discuss it after
Example 2.3.9.

The extra label set H may create some notational confusion. In this
thesis we are only interested in observable actions, therefore we use L for
the set of so called external actions: I ∪ U . traces(s) of an IOA s denotes
the set of external traces; traces that do not have internal actions.

25

Chapter 2. Model-Based Testing

?b1
?b2

?b2?b1

τ τ

!tea

q0

q1

q2

q4

q5

q6q3

?b1, ?b2?b1, ?b2

?b1
?b2

!coffee

?b2?b1

init init

!tea

q0

q1

q2

q4

q5

q6q3

?b1, ?b2

?b1
?b2

?b1
?b2

?b1
?b2

?b1
?b2

!coffee

?b1, ?b2

Figure 2.4: Examples of an IOA and IOTS

Example 2.3.9 In Figure 2.4 we show an IOA (left-hand side) and an IOTS
model (right-hand side). All transition systems model a coffee machine. We
focus on the IOA and discuss the IOTS later on. We can push two buttons:
button1 (abbreviated to b1 in the figure) and button2 (abbreviated to b2 in
the figure). After pushing button1 the machine initializes (init) and outputs
coffee, and after pushing button2 the machine initializes and outputs tea.
button1 and button2 are input actions, coffee and tea are output actions and
init is an internal action. The self-loops with b1 and b2 in states q1 till q6

show that the automaton is input enabled in every state. q0 does not need
these self-loops, since all input actions, button1 and button2, are enabled in
this state. 2

A possible problem with the input-output automata model is that an
automaton cannot give an output action, because it has to handle a never
ending stream of input actions. Since it is input-enabled, it is always able to
synchronize on an input from the environment. Lynch and Tuttle therefore
introduce a notion of fairness for IOA. In short this means that a locally
controlled action (i.e., an output or internal action) cannot be blocked by
input actions forever. The partitioning P of the locally controlled actions is
used in the operationalization of fairness. Note that the problem of fairness
exists for all models that implement the notion of input enabledness.

An execution α of an IOA s is fair if either α ends in a quiescent state or
α is infinite and for each class c ∈ P (s) either actions from c occur infinitely
often in α or states from which no action from c is enabled appear infinitely
often in α. A fair trace of an IOA s is the trace (with only external actions)
of a fair execution of s. To put it in words, a trace is fair 1) if it is finite
and ends in a quiescent state, 2) if it is infinite and there is no state that it
encounters infinitely often for which a locally controlled action is blocked.
The set of fair traces of an IOA s is denoted by Ftraces(s). Contrary to all
other trace definitions in this thesis, the set of Ftraces may contain traces

26

2.4. Input output implementation relations

of infinite length. We illustrate fairness in the following example.

Example 2.3.10 Let us look again at the IOA in Figure 2.4 on the fac-
ing page (left-hand side). Let I = {button1, button2}, U = {coffee, tea},
H = {init}, P = {{init, coffee, tea}}. P is the trivial partitioning of locally
controlled actions. The trace button1 is not a fair trace, as it does not end in
a quiescent state (it ends in q1 or q2). The trace button1·init·coffee is a fair
trace because it ends in q3, a quiescent state. All traces button1·init·button1∗

(button1 followed by init followed by zero or more times button1) are not fair.
The finite traces in the set are not fair because they end in q2, which is not
a quiescent state. The infinite traces in the set are not fair because they
encounter the state q2 infinitely often, but the locally controlled actions in
q2 (coffee) do not occur in the trace. 2

Input-output transition system The input-output transition system was
introduced by Tretmans [Tre96b]. It is basically a simplified version of the
IOA: it does not have an equivalence relation and it models internal actions
with the τ label. A subtle but important difference is that an IOTS is weakly
input enabled: ∀a ∈ I, q ∈ Q : q

a
=⇒ . We denote the class of input-output

transition systems over I and U by IOTS(I, U).

Definition 2.3.11 [Input-Output Transition System]
An Input-Output Transition System s = 〈Q, I, U, T, start〉 is a weakly input-
enabled IOLTS. Formally this means: ∀q ∈ Q, a ∈ I : q

a
=⇒ .

Example 2.3.12 In Figure 2.4 on the preceding page, the transition system
on the right-hand side is an IOTS. We see that the internal action init is
replaced by τ . Notice furthermore that the (non-stable) states q1 and q4 do
not have the self-loops with button1 and button2. This is allowed because
an IOTS is weakly input enabled. With an internal action we can go from
q1 to the input enabled state q2 (the same holds for q4 and q5). 2

2.4 Input output implementation relations

In this section we introduce the ioco theory and the ioco implementation
relation. The ioco theory was influenced by several other theories, amongst
them implementation relations defined on IOA and LTS ([DNH84, Abr87,
Bri87, Phi87, LT89, Lan90, Seg93, Pha94]). Two important characteristics
of the ioco theory are that it is LTS-based and that it uses input-enabled
models. This can be traced back to De Nicola and Hennessy ([DNH84])and
Lynch and Tuttle ([LT89]), respectively. Segala compared the IOA model
and the theory of testing of De Nicola and Hennessy and defined the so
called may and must pre-orders (that we treat in Section 2.4.1) directly on

27

Chapter 2. Model-Based Testing

i1

?button

?button

!tea
?button

s

?button

?button

i2

?button

?button

?button

?button?button ?button

!tea!coffee

?button

Figure 2.5: Example of the trace inclusion pre-order

IOA ([Seg97]). In order to put the ioco theory into perspective with respect
to other theories, and to identify its unique characteristics, we give a quick
overview of the main implementation relations on IOA and LTS.

An implementation relation is a relation that defines a notion of correct-
ness between an implementation and a specification, to be more precise a
model of the implementation and its specification (remember the test hy-
pothesis). When the implementation relation holds, we say that the imple-
mentation conforms to the specification or, in other words, the specification
is implemented by the implementation. Several implementation relations
have been defined for the transition systems that were introduced in the
previous section. When we treat an implementation relation that is also
usable for one of the other types of transition systems we will use the gen-
eral term transition system (where implementation and specification are the
same type of transition system), otherwise we specify explicitly for which
transition system the implementation relation is applicable.

We start with a rather weak relation: the trace inclusion pre-order. It
expresses that one system is an implementation of the other if its set of
traces is a subset of the set of traces of the specification.

Definition 2.4.1 [Trace inclusion] Let i and s be transition systems:

i ≤tr s =def traces(i) ⊆ traces(s)

Example 2.4.2 On the left-hand side of Figure 2.5 we see a specification
of a coffee machine. We will reuse this coffee machine specification in other
examples. It prescribes that after pressing a button at least twice we expect
to observe either coffee or tea as output. On the right-hand side we see
two implementations. The first implementation does not implement coffee
as an output. It is still trace-inclusion-correct, because the set of traces
of the implementation is a subset of the set of traces of the specification,

28

2.4. Input output implementation relations

even with the traces in button·button·button∗·coffee·button∗ missing. We find
trace inclusion not a very realistic implementation relation, because it also
approves implementations that we find intuitively incorrect. For example,
the implementation on the right only implements the pushing of the button,
without serving any drink. This is correct according to the trace inclusion
relation, because the set of traces button·button·button∗ is a subset of the
traces of the specification. 2

The remainder of this section is organized as follows: we treat the main
implementation relations defined for IOA in Section 2.4.1 and we treat the
ioco theory and its implementation relations in Section 2.4.2.

2.4.1 Implementation relations defined for IOA

In this section we treat implementation relations that were originally de-
fined for IOA: the fair and quiescent pre-order and the may and must pre-
order. These implementation relations are pre-orders: the implementation
and specification are the same type of transition system and the relation is
reflexive and transitive. We start with the fair pre-order. This pre-order
uses the notion of fair traces; it is only defined for IOA, because it requires
a partitioning P of locally controlled actions.

Fair and Quiescent pre-order Based on the notion of fair traces, Lynch
and Tuttle ([LT87]) define the fair pre-order. The combination of input-
enabling and fairness guarantees that each implementation accepts all ex-
ternal stimuli, but provides output when the implementation must provide
output.

Definition 2.4.3 [Fair pre-order] Given two IOAs i and s with the same
external label sets, the fair pre-order is defined as:

i ≤F s⇔ Ftraces(i) ⊆ Ftraces(s).

Before we give an example of the fair pre-order we introduce a pre-order
that is strongly related to the fair pre-order, namely the quiescent pre-order
introduced by Vaandrager [Vaa91]. It uses the concept of quiescent traces.

Definition 2.4.4 [Quiescent pre-order] Given two transition systems i and
s with the same external label sets, the quiescent pre-order is defined as:

i ≤Q s⇔ traces(i) ⊆ traces(s)∧ qtraces(i) ⊆ qtraces(s).

The fair and quiescent pre-orders look much alike, but there are some
important differences. The quiescent pre-order uses finite traces, whereas
the fair pre-order includes infinite traces. The relation between the two pre-
orders is easiest explained with an example (the example is reused with kind
permission of Segala [Seg97]).

29

Chapter 2. Model-Based Testing

t1

t2

?a, !y?aq0

p1

t0

τ

?a

p2

?a, !y

Figure 2.6: Quiescent versus fair pre-order, Example 2.4.5

Example 2.4.5 Figure 2.6 shows two IOA p1 and p2, a is an input ac-
tion, y is an output action and τ is an internal action. The partition of
locally controlled actions for both IOA is a single class {y, τ}. We first
treat the quiescent trace set. For p1 we have traces(p1) = qtraces(p1) = a∗

(a set of zero or more occurrences of a). For p2 we have traces(p2) =
{a, y}∗·a·{a, y}∗, qtraces(p2) = {a, y}∗. Regarding the fair traces, for p1 it
is trivial that each finite sequence an is quiescent and therefore a fair trace.
Also for p2, the finite sequence an is a quiescent and fair trace. After loop-
ing n times in t0 we move to t1 via a τ transition. Therefore p1 ≤Q p2.
However, the sequence aω (infinite times a) is a fair trace of p1 but not of
p2. The latter is because, to perform aω we are either infinitely often in t0
or t2. When we are infinitely often in t0 we are not in a quiescent state,
because τ is enabled. τ is in the partition of locally controlled actions, but
does not occur infinitely often. When we are infinitely often in t2, we are
not in a quiescent state because y is enabled. But in this case y does not
occur infinitely often in aω. Thus p1 6≤F p2. 2

MAY and MUST pre-order In this section we introduce may and must
testing for systems with inputs and outputs. The method for comparing
transition systems that was initiated by De Nicola and Hennessy is based
on the observation of the interactions between a transition system and an
external experimenter [DNH84]. The original theory was defined on labeled
transition systems and did not take input and output actions into account.
Segala compared the IOA model and the theory of testing of De Nicola and
Hennessy and defined pre-orders directly on IOA ([Seg97]). The work in
this section is based on this paper.

An experimenter e for a transition system p is a transition system that
is compatible with p. Compatible means that the input actions of e are the
output actions of p (Ie = Up) and the output actions of e are the input
actions of p, plus the experimenter has a unique (i.e., not in the other label

30

2.4. Input output implementation relations

sets) output action ω called the success action (Ue = Ip∪{ω}). The intuition
behind the experimenter is that an implementation conforms to a specifica-
tion if no external observer can see the difference. The experimenter e runs
in parallel with p and synchronizes its output actions with input actions of p
and vice versa (except ω). An experiment is an execution of p‖e which is in-
finite or ends in a deadlocked state. We say that the experiment is successful
if ω is enabled in at least one state of the experiment. If there is a successful
experiment p‖e we use the notation p may e. If every experiment p‖e is
successful we use the notation p must e. On this notion of may and must
we can define pre-order relations. We will start with the may pre-order.
We use the definition from Segala [Seg97]. This is a so-called extensional
definition, because it refers to an external experimenter. The definitions so
far are intensional, because they do not use an experimenter. Instead they
focus on observable behavior.

Definition 2.4.6 [may pre-order] Let e, i, s be IOA:

i ≤may s⇔ ∀e : i may e⇒ s may e

Definition 2.4.7 [must pre-order] Let e, i, s be IOA:

i ≤must s⇔ ∀e : i must e⇒ s must e

It is also possible to define the may and must pre-orders in an intentional
way, i.e., without referring to an external experimenter. For the may pre-
order this is easy, as Hennessy has shown that the may pre-order and external
trace inclusion are equivalent [Hen88].

Theorem 2.4.8 Let i, s be IOA:

i ≤may s⇔ traces(i) ⊆ traces(s)

2

For the must pre-order a bit more work is needed. Segala uses the fol-
lowing definition of the must relation [Seg97]. In it he uses a state property,
similar to init called wenabled which is defined as: wenabled(q) = {a ∈ L |
q

a
=⇒} where q is a state in the state set of the transition system.

Definition 2.4.9 [must′ relation] Given an IOA p, a set of states Q ⊆ Qp
and a set of external actions A ⊆ Lp.

Q must′ A⇔

1. A ∩ I 6= ∅, or

2. ∀q ∈ Q : wenabled(q) ∩ U ⊆ A∧wenabled(q) ∩ A 6= ∅

31

Chapter 2. Model-Based Testing

q0

!y !y

?a

τ

?a

?a ?a

?a

!y

p1 p2

t0

q2

q1

t1

Figure 2.7: must testing example

Rule one of the must′ relation says that any transition system must
perform its input actions: if there is an input action in A then the must′

relation automatically holds. Rule two says that an IOA decides which one
of its output actions to perform (as longs as they are in A).

With this definition of the must relation on IOA we define the must
pre-order in the following way.

Definition 2.4.10 [must′ pre-order] Let i, s be IOA with (external) label
set L:

s ≤must′ i⇔ ∀σ ∈ L∗, A ⊆ L : (s after σ) must′ A⇒ (i after σ) must′ A

Example 2.4.11 We give an example of the must′ relation and show what
this means for the must′ pre-order. Let us look at transition system p2

(right-hand side) in Figure 2.7. It is straightforward to see that {t0} must′
{a, y}, because a is an input action (rule 1 of Definition 2.4.9). Likewise
{t0} must′ {y}, because init(q) = {a, y}, therefore init(q) ∩ U = {y}. But
note that also {t0} must′ {x, y}, supposed that U = {x, y}. We leave it to
the reader to verify that p1 and p2 are equivalent according to the must′

pre-order (and also to the quiescent pre-order; they are weakly bisimular).
2

Segala has shown that this definition of the must pre-order is equivalent
with (the inverse of) the quiescent pre-order, under the restriction that the
transition systems are strongly converging (no τ -loops) and finitely branch-
ing (every state has finitely many transitions).

Theorem 2.4.12 Let i and s be finitely branching and strongly convergent
IOA.

s ≤must′ i⇔ i ≤Q s.

2

32

2.4. Input output implementation relations

2.4.2 IOCO based testing

In this section we introduce the implementation relations in the tradition of
the ioco testing theory. The relations in this section are no pre-orders, be-
cause they take an IOLTS as a specification and assume the implementation
to be an IOTS (we refer to the relations as implementation relations).

We treat the following implementation relations: ≤iot , ioconf , ≤ior and
ioco. For the implementation relations in this section we use the intentional
definitions. The equivalence of our definitions with the original definitions
is proved in [Tre96a].

Input-output testing relation The input-output testing relation tests
with traces in L∗. This means that we can use any trace to test with, even
if its behavior is not specified by the specification.

Definition 2.4.13 [Input output testing relation] Let s ∈ IOLTS(I, U), i ∈
IOTS(I, U)

i ≤iot s =def ∀σ ∈ L∗ : out(i after σ) ⊆ out(s after σ).

An implementation i is ≤iot -correct with respect to a specification s if
for all traces with which we test, the set of outputs of the implementation
after such a trace is a subset of the set of outputs of the specification after
the same trace. This means that we should not be able to observe different
or more behavior from the implementation than from the specification.

Example 2.4.14 We illustrate the input output testing relation with the
trace inclusion pre-order example in Figure 2.5 on page 28. The implemen-
tation i1 is ≤iot -correct with respect to specification s. We see that the
implementation does not give coffee after pressing the button twice, so how
can it be correct? Let us take a look at the definition of ≤iot . The spec-
ification prescribes that the set of outputs after the trace button·button =
{coffee, tea}. When we take a look at i1 we see that the set of outputs after
button·button = {tea}. Because {tea} ⊆ {coffee, tea} it is correct behavior
according to ≤iot . The interpretation of choice in output is that we do not
care which branch is implemented as long as at least one is. We can do the
same analysis for implementation i2. Here we find that after pressing the
button twice i2 does not give any output; it is quiescent. This means that
out(i2 after button·button) = {δ}. This is not a subset of {coffee, tea} and
therefore i2 6≤iot s. 2

ioconf relation The difference between ioconf and the input-output test-
ing relation is that ioconf uses a different set of traces to test with, namely
the set of all possible traces of the specification: traces(s). This means that

33

Chapter 2. Model-Based Testing

i1

?button

?button

!tea
?button

s

?button

?button

i2

?button

!tea!coffee

?button

?button

?button

!tea
?button

?kick

?kick

?kick

?kick

!soup ?button
?button

?kick

?kick

Figure 2.8: Example of ioconf

we will not test behavior that is not specified. One way to interpret this is
as implementation freedom: “We do not know or care what the implemen-
tation does after an unspecified trace”. The advantage is that we can test
with incomplete specifications. Since traces(s) ⊆ L∗, the ioconf relation is
weaker than the ≤iot relation.

Definition 2.4.15 [ioconf] Let i ∈ IOTS(I, U), s ∈ IOLTS(I, U)

i ioconf s =def ∀σ ∈ traces(s) : out(i after σ) ⊆ out(s after σ).

Example 2.4.16 In Figure 2.8 we illustrate the ioconf relation. i1 is the
same implementation as in the examples for external trace inclusion and
≤iot . This implementation is correct under ioconf . This is easy to see,
because the trace button·button ∈ traces(s); it is a trace of the specification
and out(i1 after button·button) = {tea} ⊆ out(s after button·button) =
{coffee, tea}. Implementation i2 introduces new behavior. When we kick
the coffee machine it outputs soup. This behavior is nowhere to be found in
the specification: the behavior of kicking the machine is underspecified. This
kind of behavior would be a problem for ≤iot since it will test on all possible
behavior of the label set: L∗. When we test the kicking of the machine with
≤iot we get the following result: out(i2 after kick) = {soup} 6⊆ out(s after
kick) = ∅. In other words the implementation does not conform to the
specification according to ≤iot . This is the reason that with ≤iot we need
an input-complete specification, otherwise the relation will never hold after
an unspecified input action. ioconf does not have this restriction, because
it will only test behavior that is specified. Since kick /∈ traces(s), we will
not test this behavior. Because all the other behavior of i2 is identical to i1
we have i2 ioconf s. 2

Input-output refusal relation The input-output refusal relation, uses L∗δ

34

2.4. Input output implementation relations

?button

?button?button

!coffee

p2

!tea

?button

?button?button

!coffee

p1

?button

?button

?button ?button

?button

?button

?button

?button?button

!tea
!coffee

Figure 2.9: Comparison between ioco and other relations

as the set of traces to test with. This makes it possible to continue test-
ing after the observation of quiescence. With the previous implementation
relations it was only possible to observe quiescence at the end of a trace.
Quiescence can be seen as refusal to do an output action, hence the name
of the implementation relation. Because we test with the entire label set,
it only makes sense to test with complete specifications as was illustrated
for ≤iot in Example 2.4.16. Again, the correctness criterion is that an im-
plementation does not show more output behavior than is allowed by the
specification.

Definition 2.4.17 [Input output refusal] Let i ∈ IOTS(I, U) and s ∈
LTS(I, U)

i ≤ior s =def ∀σ ∈ L∗δ : out(i after σ) ⊆ out(s after σ).

We give an example of the ≤ior implementation relation together with
ioco, because these two implementation relations are closely related.

ioco relation The ioco testing theory is named after its implementation
relation ioco. ioco, like ≤ior , allows us to continue testing after the observa-
tion of quiescence. In order to be able to test with incomplete specifications
we restrict the set of traces to the suspension traces of the specification.
This set is smaller than the set of traces of ≤ior . In other words, ioco is a
weaker implementation relation than ≤ior .

Definition 2.4.18 [ioco] Let i ∈ IOTS(I, U), s ∈ LTS(I, U).

i ioco s =def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ).

Example 2.4.19 We illustrate the ≤ior and ioco implementation relations
in Figure 2.9 in an example from Tretmans [Tre96a]. We see two IOTSs

35

Chapter 2. Model-Based Testing

p1 and p2 that model a coffee machine with peculiar behavior. p1 models a
machine where after pressing a button once, we get either coffee or nothing
(quiescence). If we got nothing and we press the button again we get either
tea or coffee. p2 models an almost identical machine, except that after we
press the button again after obtaining nothing after the first button press
we will only get tea (so no coffee). If p1 is the implementation and p2 the
specification we see that p1 ≤iot p2 and p1 ioconf p2, but not p1 ≤ior p2 and
not p1 ioco p2. Let us begin with ioco, ioco can see the difference between
the transition systems because of the following trace. After button·δ·button
we will observe tea and coffee for p1, whereas p2 prescribes that only tea
is allowed. The same holds for ≤ior since it is also capable of this same
test case. However ≤iot and ioconf are not capable of observing quiescence
during testing and can therefore not tell the difference between the trace
button·button·coffee in the left branch of the transition system or in the
right branch of the transition system. In other words, they are not powerful
enough to see the difference.

When we take p2 as the implementation and p1 as the specification we
see that all implementation relations identify the implementation as correct.
This is logical since the only difference between p1 and p2 is that p2 does not
offer the possibility of coffee in the right branch. This is correct, since the
specification p1 gives the choice between implementing either one (or both).

2

The structure of the definitions of the implementation relations in this
chapter makes it easy to compare them. The only variable is the set of
traces over which we test. The proposition below (by Tretmans [Tre96a])
expresses the relation between the implementation relations. The rationale
is that: traces(s) ⊆ Straces(s) ⊆ L∗δ and traces(s) ⊆ L∗ ⊆ L∗δ .

Proposition 2.4.20 Comparison of expressiveness of the implementation
relations.

≤ior⊂
{
≤iot

ioco

}
⊂ ioconf

2

This seems an appropriate place to mention the relation with may and
must pre-orders. Tretmans showed that≤iot is equivalent with the quiescent
pre-order, and thus equivalent to the must pre-order [Tre96a]. The may
pre-order is equivalent with trace inclusion [Hen88].

Introspection When we look at the history of ioco, we can make the fol-
lowing observations. We find the ioco definition rather elegant and easy to
read because of its intensional definition, i.e., a definition without external
observers. On top of this the relation appeals to an intuitive correctness

36

2.5. Testing transition systems

notion by comparing the output of the implementation with the output
prescribed by the specification after a defined trace (by the specification).
Compare this with the other relations that look at some form of trace in-
clusion. ioco assumes implementations to be input-enabled. We find this
a realistic assumption, since in many cases a tester can provide an imple-
mentation with stimuli, whether the implementation expects it or not. We
do feel that the consequences of input-enabled implementations versus non-
input-enabled specifications are a bit hidden in the theory. Especially the
notion of underspecification of input actions in the specification needs more
attention as we will show in Chapter 3.

2.5 Testing transition systems

In the previous sections, we have discussed several I/O-models and imple-
mentation relations. In this section, we introduce two more concepts of the
conformance testing framework, namely test derivation and test execution,
targeted specifically for ioco. We will show the relation between ioco and
test generation and execution. We start with the introduction of test-cases.

Test-cases A test-case is a specification of the experiment that an experi-
menter wants to conduct on an implementation. A test-case can be modeled
by an IOLTS. We add a couple of restrictions to the behavior of a test-case.
To guarantee that a test-case finishes in finite time it should have finite be-
havior. Furthermore to ensure maximal control over the testing process we
do not allow non-deterministic behavior. We also do not allow choice be-
tween multiple input actions and between input actions and output actions.
This implies that a state in a test-case is either a terminal state, or a state
that offers exactly one input to the implementation or accepts all outputs
of the implementation. To give a verdict over the success of the test-case
we label terminal states with pass and fail. These restrictions are formally
expressed in the following definition of a test-case. Note that a test-case
could in principle be defined without these restrictions. It could be an ar-
bitrary LTS that synchronizes on the actions of the implementation under
test. The definition we introduce here has shown to be both theoretically
and practically useful.

Definition 2.5.1 [Test-case] A test-case t = 〈Q, R, S, T , start, Pass, Fail〉
over a set of stimuli S ⊆ L and responses R ⊆ Lδ (S ∩ R = ∅) is an acyclic
IOLTS 〈Q,S,R, T, start〉 such that:

• t is deterministic and has finite behavior.

• Pass,Fail ⊆ Q with Pass ∩ Fail = ∅ and ∀q ∈ Pass ∪ Fail : init(q) = ∅.

37

Chapter 2. Model-Based Testing

t1

t5

δ

pass passfail

t0

t7 t8t6

!button

δ

!buttonfail fail

?coffee?tea

?tea ?coffee

!tea!coffee

q0

q1

q2

q4q3

t2 t3 t4

?button

?button

Figure 2.10: Example of a test-case

• For any state q ∈ Q of the test-case, if q /∈ Pass ∪ Fail then either
init(q) = {a} for some a ∈ S, or init(q) = Rδ.

The class of test-cases over R and S is denoted as TEST(R,S). A test
suite T is a set of test-cases: T ⊆ TEST(R,S).

We will use the terms stimulus for an output of the test-case (i.e., an
input of the implementation) and response for an input of the test-case (i.e.,
an output of the implementation). We deviate from Tretmans’ definition of
a test-case in that we denote the observation of quiescence with δ instead
of θ and that we use sets of pass and fail states instead of one pass state
and one fail state. In figures we denote a state in Pass by writing pass
underneath it, likewise fail for states in Fail.

For a test-case t and an arbitrary trace σ we write t σ−→pass, if and only
if there exists a state q ∈ Pass such that t σ−→ q. In a similar way we use the
notation t σ−→ fail

Example 2.5.2 On the right-hand side of Figure 2.10 we show an example
of a test-case. With this test-case we can test the coffee machine specified
on the left-hand side. We see that the test-case starts with the stimulus
button in state t0. In state t1 it makes an observation. The specification
prescribes that there should be no output. So, if we observe coffee, or tea we
add the end state to the set of fail states Fail, like in t2 and t4. If we observe
quiescence we continue testing. Again we stimulate the implementation with
button and arrive in state t5. Now the specification prescribes that we can
observe coffee or tea as valid responses. This means that the observation
of quiescence leads to state t7 in Fail. If we observe coffee or tea we stop
testing: the states t6 and t8 are states in Pass. 2

38

2.5. Testing transition systems

Test execution The execution of a test-case on (a model of) an implemen-
tation is modeled by synchronous parallel composition (denoted by ‖) of the
test-case with the implementation under test. This means that inputs of
the test-case synchronize on outputs of the implementation and vice versa.
In case of quiescence, the test-case synchronizes on δ. The execution con-
tinues until the test-case reaches a pass or fail state. Because of the special
structure of a test-case and input-enabledness of the iut, we are sure that
the test-case will always eventually reach a pass or fail state. An imple-
mentation passes the test if the test-case ends in a pass state, if it ends in
a fail state we say that the implementation fails the test-case. This means
that we have found a deviation between the model and the implementation;
a potential error. Because an implementation can have non-deterministic
behavior, different executions with the same test-case can lead to different
terminal states (and possibly different verdicts). Therefore, an implemen-
tation passes a test-case if all possible test executions lead to the verdict
pass.

Definition 2.5.3 Let t ∈ TEST(R,S) and i ∈ IOTS(I, U).

1. An execution of a test-case t with an implementation i is a trace of the
synchronous parallel composition t‖i leading to a terminal state of t:

σ is a test execution of t and i iff ∃i′ : t‖i σ
=⇒pass‖i′or t‖i σ

=⇒ fail‖i′.

2. Implementation i passes test-case t if all their test executions lead to
the pass-state of t:

i passes t =def ∀σ ∈ L∗δ ,∀i′ : t‖i /
σ

=⇒ fail‖i′.

3. An implementation i passes test suite T if it passes all test-cases in T :

i passes T =def ∀t ∈ T : i passes t.

If i does not pass the test suite, it fails: i fails T =def i /passes T .

Note that the label-set of the parallel composition t‖i has the signature:
It‖i = (Rt ∪ Ii)\G and Ut‖i = St ∪ Ui with G = (Rt ∩ Ui) ∪ (St ∩ Ii).
In general, a test-case has the inverse label-set of the iut: S = I and
R = U (a stimulus/input for the test-case is an output from the iut and a
response/output from the test-case is an input for the iut). This results in
the interesting signature It‖i = ∅ and Ut‖i = I ∪ U

As explained in Section 2.2, completeness, soundness and exhaustiveness
are important properties of test-cases/test suites. Soundness expresses that
if an implementation fails a test-case, there really is an error in the imple-
mentation according to the specification (i.e., not an error in the test-case).

39

Chapter 2. Model-Based Testing

An exhaustive test suite means that if there is an error in the implementa-
tion, there is a test-case in the test suite to detect it. Note that in practice
exhaustiveness often means a (practically) infinite test suite. One loop in
the specification makes an exhaustive test suite infinite, because an error
can occur after an arbitrary number of iterations of the loop. An exhaus-
tive test suite needs to take this infinite behavior into account. We call the
combination of soundness and exhaustiveness completeness. Below we give
the formal definitions.

Definition 2.5.4 Let s be a specification and T a test suite then:
T is complete =def ∀i : i ioco s⇔ i passes T
T is sound =def ∀i : i ioco s⇒ i passes T
T is exhaustive =def ∀i : i ioco s⇐ i passes T

Test derivation We finish the instantiation of the test framework with test
derivation (also called test generation). A minimal requirement for a test
derivation algorithm is that it derives sound test-cases. As mentioned above,
exhaustiveness is an interesting requirement for a test derivation algorithm,
because of the possibly infinite size of these test suites. Therefore some
people argue to a priori choose to derive a finite test suite. This seems to
have some practical advantage as the derived test suites are always finite
and, if well done, we know what test-cases are in the test suite (and which
ones are not). The downside of this choice is that there are non-conforming
implementations that we cannot detect because we are unable to derive the
necessary test-cases that detect the errors. We find this an unacceptable
property of a test-case derivation algorithm. Our point of view is that in
principle we should be able to find all possible errors in an iut and that for
practical reasons we may have to limit the amount of derived test-cases (but
not the other way around).

It turns out that a relatively simple algorithm can potentially produce
a complete test suite for ioco. Test generation algorithms for the other im-
plementation relations can be made in a similar way. For the completeness
proof we refer to Tretmans [Tre96a]. In the definition of the test derivation
algorithm we have chosen to use the process notation introduced in Sec-
tion 2.3.2 to make it easier to read. We added pictures to represent the way
a test-case is built up (the pictures are fragments of test-cases) from the
behavioral expressions. Furthermore we give an example of the derivation
of a test-case after the definition.

Definition 2.5.5 Let s ∈ IOLTS(I, U) be a specification. Let S be a non-
empty set of states, with initially S = {start}. A test-case t ∈ TEST(I, Uδ)
is obtained from S by a finite number of recursive, non-deterministic appli-
cations of one of the following three choices:

40

2.5. Testing transition systems

1.

pass

t := pass
The test-case with only the state pass is always a sound
test-case. This rule stops the recursion in the algorithm.

2.

t′

!a

t := a; t′ where a ∈ Is and S after a 6= ∅. t′ is obtained
by recursively applying the algorithm for S′ = S after a.

This step of the algorithm adds a stimulus a to the test-
case. After applying a, the test-case behaves as t′ which
is obtained by applying the test derivation algorithm re-
cursively to S′. t′ is depicted as an abstract sub-tree
(triangle) in the figure.

3.

tx

. . .

fail fail

?x2?x ?δ

t := Σ {x; fail | x ∈ U, x 6∈ out(S)}
+ Σ {δ; fail | δ 6∈ out(S)}
+ Σ {x; tx | x ∈ U, x ∈ out(S)}
+ Σ {δ; tδ | δ ∈ out(S)}

tx and tδ are obtained by recursively applying the test derivation al-
gorithm for S′ = S after x, S after δ, respectively.

This step of the algorithm adds expected outputs to the test-case. If
the output is incorrect according to the specification we add a tran-
sition with the output to a fail state, thus ending that part of the
test-case. For outputs that are allowed, we continue the test deriva-
tion with tx, tδ respectively.

Example 2.5.6 We illustrate the test derivation algorithm with our coffee
machine specification shown on the left-hand side in Figure 2.10 on page 38.
We will show how to derive a test-case with the algorithm. We derive the
same test-case as the one used in Figure 2.10 on page 38. When we start,
the set S consists of only the start state q0 of our specification. We non-
deterministically choose one of the three rules of the test derivation algo-
rithm. We start by applying rule 2 of the test derivation algorithm and
apply the input button. This is possible, since q0 after button = {q1} (6= ∅).
The result is t0 = button; t1 (the transition (t0, !button, t1) in our test-case).
The set S is updated to S = {q1}. We choose to observe responses from
the implementation under test: we apply rule 3. There are three possible
responses: tea, coffee and quiescence. We compute out(q1) = {δ} of the
specification. This means that the only allowed output is quiescence. By
applying our algorithm we obtain: t0 = button; (tea; t2+δ; t3+coffee; t4) with

41

Chapter 2. Model-Based Testing

t2 and t4 fail states. In other words, we add a transition with tea to a fail-
state (t1, ?tea, t2) and a transition with coffee to a fail state (t1, ?coffee, t4).
For the allowed response δ we add the transition (t1, δ, t3). We update S
with S after δ = {q1}. We again apply the stimulus button which results in
the transition (t3, button, t5) and S = {q2} (we skip the behavior expression,
to keep the example terse). For rule 3 there are two options, either the re-
sponse coffee or the response tea, since out(q2) = {coffee, tea}. We add the
transitions (t5, ?tea, t6), (t5, ?coffee, t8) and (t5, δ, t7) where t7 is a fail-state.
At this point the specification has two possible paths to continue with. For
the “tea” path we update S with {q4} and for the “coffee” path we update
S with {q3}. We can in principle continue forever with alternating between
rule 2 and 3 of the test derivation algorithm until we reach a final state in
the specification or until we want to stop. In our case the specification has
reached a final state and we can apply rule 1 to stop the recursion. This
transforms states t6 and t8 into pass-states. 2

2.6 Conclusion and introspection

The purpose of this chapter is to put up the necessary scaffolding for the
rest of the thesis. We introduced a conformance testing framework for LTS-
based testing with inputs and outputs and we filled in and explained the
parts and pieces of this framework. To recapitulate, the conformance rela-
tion important for this thesis is ioco. ioco assumes the specification to be an
IOLTS and it assumes that the implementation can be modeled as an IOTS.
We have shown an algorithm to derive test-cases from a specification. The
actual testing, consists of executing the test-cases against the implementa-
tion. The testing results in a verdict. If the implementation shows behavior
that we expect, based on the specification, the implementation passes the
test-case, otherwise it fails.

We like the ioco theory because of its simplicity, elegance and lack of
restrictions. For example, compared to FSM-based testing, ioco allows
specifications to be non-deterministic, infinite and partially specified. There
are two characteristics of the ioco theory in particular, that we like to
emphasize. The first one is that it uses LTS-based specifications, the other
is that the theory assumes implementations to be input-enabled.

We find LTS-based specifications important, because it gives the theory
a powerful, yet simple formalism with a clear semantics. For example, input
and output actions are separated. This may seem trivial, but for example
the FSM-based approach combines input and output actions in one transi-
tion. In our opinion testing is about experimenting with the implementation
by providing stimuli and observing responses and we find it important that
the specification formalism supports this. The separation of input and out-
put transitions is very important, if not a must, for our work on action

42

2.6. Conclusion and introspection

refinement (Chapter 5). Another characteristic of an LTS that we find im-
portant is that it has well defined operations defined on it. For example an
operation that is important for this thesis is compositionality, in particular
parallel composition. We treat compositionality and the ioco theory in the
next chapter. Input-enabledness of implementations reminds us that imple-
mentations are special. In general a tester can always send a stimulus to
the implementation under test. Possible exceptions are graphical interfaces,
or systems with a physical interface. When a button is not available on the
screen we cannot click it and if a coin slot of a vending machine is blocked,
we cannot enter a coin. The next chapter will show that compositionality
and input-enabledness are important properties in the ioco theory.

While the ioco theory has pleasant characteristics, there is certainly
room for improvement. It would be very nice if the strong convergence
restriction on transition systems can be lifted. Divergence is considered to
be a bad property of a specification, however there is a category of perfectly
normal systems that are divergent by nature. For example systems that
send a message every x time units, with x a certain amount of time (for
example 2 seconds). Hiding this message creates a divergent system. We
find that it is up to the modeler to decide if convergence is a necessary
property. Related to convergence is the observation of quiescence. For
practical testing, quiescence is implemented by observing responses until a
certain time-out. This means that practically, quiescence is time-related,
real quiescence cannot be observed from the outside. We think it is a good
idea to integrate this notation of time explicitly into the theory. This can
for example be done by introducing a notion of fairness on output actions.
If the implementation can perform an output according to the specification,
it should be visible after a certain amount of time. This also solves the
convergence restriction: infinite τ -loops cannot block outputs forever.

Two other, probably related, issues are the role and definition of test-
cases and the test-case generation algorithm. On the intuitive level traces,
and test-cases are similar, closely related concepts (a test-case can even be
represented as a set of traces): a test-case tests if the traces of an imple-
mentation are conform the traces prescribed by the specification. Look for
example at the similarity in the proofs for traces and test-cases in Chap-
ter 5. Also in practice, hand-made test-cases often do not look like the
tree-like structures of the ioco theory. They look more like traces or test-
purposes [dVT01]. It feels like the theory could be improved in this area.

The test case generation algorithm of Section 2.5 describes a way to
construct test-cases; it is constructive. It would be nice to have an explicit
characterization of a test-suite needed for conformance testing. Then we can
show that the test-case generation algorithm fulfills the characterization.
Starting with the algorithm seems the wrong order.

On the positive side, this means that there is still work to do. Luckily
the ioco community is relatively active. Furthermore it has tool-support.

43

Chapter 2. Model-Based Testing

We find it important to test theory in practice (many test theories and test-
relations exist only on paper). The ioco theory is implemented in some test-
tools, like TorX [dVT98] and TGV [FJJV96, FJJV97, CJRZ02]. TGV uses
an implementation relation quite similar to ioco (the interpretation of qui-
escence differs in that τ -loops are also interpreted as quiescence). Lately the
ioco-theory has been extended with time [BB04] and hybrid models [vO06]
and the original TorX tooling is rewritten into the more portable Java frame-
work [JTo, Bel10].

44

Chapter 3

Compositional testing with
ioco

In this chapter we show that standard ioco cannot be used for composi-
tional testing. We give an analysis why this is the case and provide some
solutions. We show that when specifications are modeled by IOTSs (as op-
posed to LTSs), compositional testing works fine. We introduce demonic
completion: a way to transform an LTS to an IOTS (in order to enable
compositional testing) and based on this notion, we introduce a new imple-
mentation relation uioco. While uioco solves some of the compositionality
problems of ioco, it unfortunately is not compositional itself. Finally we
introduce a new parallel composition operator that supports compositional
testing. Furthermore we show that the results for compositional testing are
also applicable for testing in context. The contents of this chapter are based
on our work on compositional testing [vdBRT04].

3.1 Introduction

C
ompositional testing is the topic of this chapter: the testing of com-
municating components that together form a larger system. Composi-

tional testing in this sense is known under different names. To name two:
component based testing, i.e., integration testing of components that have
already been tested separately; and interoperability testing, i.e., testing if
systems from different manufacturers, that should comply with a certain
standard, work together; for example when testing if GSM mobile phones
from different manufacturers can communicate with each other. The central
question in this chapter is: “what can be concluded from the individual tests
of the separate components, and what should be (re)tested on the integra-
tion or system level”? We will show that in the traditional ioco theory (i.e.,
before our work) it is unclear what the relationship between the correctness
of the components and the integrated system is.

45

Chapter 3. Compositional testing with ioco

scof = hide {make coffee,make tea, error} in smon‖sdrk

drinkmoney

error

make tea
make coffee

0.50, 1.00

0.50, 1.00

coffee, tea

icof = hide {make coffee,make tea, error} in imon‖idrk

Figure 3.1: Architecture of coffee machine in components

Another scenario, with similar characteristics, is testing in context. This
refers to the situation that a tester can only access the implementation under
test through a test context [ISO96, JJTV99, PYVB96]. As a consequence the
tester can only indirectly observe and control the iut via the test context.
This makes testing weaker, in the sense that there are fewer possibilities for
observation and control of the iut. With testing in context, the question
is whether faults in the iut can be detected by testing the composition
of iut and test context, and whether a failure of this composition always
indicates a fault of the iut. This question is the converse of compositional
testing: when testing in context we wish to detect errors in the iut — a
component — by testing it in composition with the test context, whereas
in compositional testing we judge correctness of the integrated system from
conformance of the individual components.

Compositional testing and testing in context are issues in the testing the-
ory in general, and in the ioco-theory in particular. For the testing theory
based on Finite-State-Machines (FSM) this issue has been studied in [PY97],
where the authors use so called communicating FSMs. To put it in ioco
terms we investigate in this chapter if ioco correctness of the components
implies ioco correctness of the entire system (formed by the components).
We focus on two operations that are important in compositional testing:
parallel composition and hiding. With parallel composition we can form
a system of communicating components. Hiding makes it possible to hide
communication between components.

Example 3.1.1 We illustrate compositional testing with a coffee machine
that consists of a “money component” (money) and a “drink component”
(drink). money handles the inserted coins and drink takes care of preparing
and pouring the drinks. In Figure 3.1 we see the coffee machine consisting
of the components money and drink. The purpose of the outer border is to
identify the individual components and the composed system.

The money component accepts coins of ¤1 and of ¤0.50 as input from
the environment. After insertion of a ¤0.50 coin (or a ¤1 coin), the

46

3.1. Introduction

money component orders the drink component to make tea with the
make tea command (or coffee with the make coffee command). If some-
thing goes wrong in the drink making component the money compo-
nent receives an error signal and gives the inserted money back.

The drink component interfaces with the money component and the en-
vironment. If the drink component gets the make tea command (or
the make coffee command) it outputs tea (or coffee, respectively) to
the environment. If anything goes wrong in the drink making process,
the component gives an error signal.

The coffee machine is the parallel composition of the components money
and drink, in which the commands make coffee,make tea and error are
hidden. One can think of the parallel composition as establishing the
connection between the money component and the drink component,
whereas hiding means that the communication between the compo-
nents is not observable anymore; only communication with the envi-
ronment can be observed. This means that to the environment the
coffee machine is a black box: all communication inside the box is
hidden. The only observable actions are ¤1.00,¤0.50, coffee and tea.
When we look inside the box we see the communicating components
money and drink. We denote the specification of the money component
and drink component as smon and sdrk, respectively. Likewise we use
imon and idrk for the implementations. We use scof and icof to denote
the coffee machine specification and implementation, respectively.

2

In terms of the coffee machine example, the question we investigate in
this chapter is: “If the money component and drink component have been
tested to be correct implementations, may we conclude that their integration
is also correct?”. In Section 3.2 we extend our coffee machine example.

The main result of this chapter is that we show that ioco can be used for
compositional testing. Either by using IOTS specifications, or by using our
adapted parallel composition operator. We show that underspecification of
input actions is a problem when testing communicating components with
the ioco theory. This idea is new for LTS testing. It is inspired by [DNS95]
and similar work done in FSM testing [PBD94]. We show that the results
on compositional testing are also applicable for testing in context.

Overview In Section 3.2 we extend our coffee machine example and we
formalize the problems of compositional testing and testing in context. Sec-
tion 3.3 studies preservation of ioco for parallel composition and hiding.
Section 3.4 discusses underspecification. It treats three ways to tackle un-
derspecification of input actions in LTSs: one is to remove underspecification

47

Chapter 3. Compositional testing with ioco

coffee
!make

tea
!make

specification of money specification of drink

?i¤1.00 ?i¤0.50

smon sdrk

coffee
?make

tea
?make

?make tea

!coffee !tea

?make coffee
?make tea

?make coffee

tea
?make

coffee

?make
coffee !error

?make

?make
tea

!error !error

Figure 3.2: Specification of money and drink components as LTSs

entirely by making an LTS specification input enabled, another is to change
the definition of ioco and the third is to change the definition of the parallel
composition operator. In Section 3.5 we show that the results for composi-
tional testing are also applicable for testing in context. Section 3.6 concludes
with some final remarks and an assessment of the results.

3.2 Approach

We study systems that consist of communicating components. These com-
ponents can be tested individually and while working together (in the case
of testing in context the components are the iut and its test context). The
behavior of such a system is described by the parallel composition of the
individual transition systems. Output actions of one component that are
in the input label set of another component are synchronized, resulting in
a single, output transition of the overall system. Actions of a component
that are not in the label set of another component are not synchronized,
resulting in a single observable transition of the overall system (see also Sec-
tion 2.3.2). In case the synchronized action cannot be observed anymore, for
example because the interface between the components is hidden, we apply
hiding after the parallel composition, rendering the synchronized action to
an internal action.

In Example 3.1.1 we illustrated compositional testing with a coffee ma-
chine. The following example treats compositional testing in more detail by
looking at the transition systems of the components in our coffee machine
example.

Example 3.2.1 Figure 3.2 shows the LTSs of the specifications of the
money component (smon) and the drink component (sdrk). smon outputs
a make coffee command after insertion of i¤1.00 and a make tea command

48

3.2. Approach

!make
tea

imon idrk

implementation of money implementation of drink

!make
coffee

? ?

!error

? ?

??

?i¤0.50

!error

!coffee !teacoffee tea

coffee tea

?make ?make

?make ?make

?error!o¤1.00

?i¤1.00

Figure 3.3: Implementation of the money and drink components as IOTSs

after insertion of i¤0.50. The money labels occur as input and output ac-
tions. Because input and output label-sets are supposed to be disjoint we
add ‘i’ and ‘o’ to the money labels. The label sets of smon are Imon =
{i¤0.50, i¤1.00, error} and Umon = {make coffee,make tea, o¤0.50, o¤1.00}.
The drink component outputs coffee after it receives the make coffee com-
mand and tea after it receives the make tea command. When something goes
wrong in the coffee or tea making process, for example when the machine is
out of coffee, it outputs an error signal (note that the money component is
underspecified for error). The drink component cannot recover from an error
state and while in the error state it cannot produce tea or coffee. The drink
component has the following label sets: Idrk = {make coffee,make tea} and
Udrk = {coffee, tea, error}. Figure 3.3 shows implementation models of the
money component, imon, and the drink component, idrk (as IOTSs). We have
used transitions labeled with ‘?’ as an abbreviation for all the non-specified
input actions from the alphabet of the component. The label sets for the
implementations are the same as the label sets for the specifications of the
components.

In the implementations we choose to improve upon the specification, by
adding functionality. This is possible since ioco allows partial specifications.
Implementers are free to make use of the underspecification. The extra
functionality of imon compared to its specification smon is that it can handle
error signals: it reacts by returning ¤1.00. idrk is also changed with respect
to its specification sdrk: making tea never produces an error signal. Since
implementations are input enabled, we have chosen that all non specified
inputs are ignored, i.e., the system remains in the same state.

The result is that we have implementations of the components that
are ioco correct with respect to their specifications: imon ioco smon and
idrk ioco sdrk. The question now is whether the integrated implementation,
as depicted by icof in Figure 3.1 on page 46, is also ioco correct with respect

49

Chapter 3. Compositional testing with ioco

to the integrated specification scof . We discuss this in Section 3.3. 2

3.3 Central questions in compositional testing

We paraphrase the question of compositional testing, discussed in the intro-
duction, as follows: “Given that the components p and q have been tested to
be ioco-correct (according to their respective specifications), may we con-
clude that their integration is also ioco-correct (according to the integrated
specification)?”. If the component specifications are LTSs, the component
implementations are modeled by IOTSs, and their integration by parallel
composition followed by hiding, this boils down to the following questions
in our formal framework (we introduced parallel composition and hiding in
Section 2.3.2) where ik ∈ IOTS(Ik, Uk) and sk ∈ LTS(Ik, Uk) for k = 1, 2,
with I1 ∩ I2 = U1 ∩ U2 = ∅:

Q1: Given ik ioco sk for k = 1, 2, is it the case that i1‖i2 ioco s1‖s2?

Q2: Given i1 ioco s1, is it the case that (hide V in i1) ioco (hide V in s1)
for arbitrary V ⊆ U1?

If the answer to both questions is yes, then we may conclude that ioco
is suitable for compositional testing as stated in the following conjecture.

Conjecture 3.3.1 If ik ∈ IOTS(Ik, Uk) and sk ∈ IOLTS(Ik, Uk) for k =
1, 2 with I1 ∩ I2 = U1 ∩ U2 = ∅ and V = (I1 ∩ U2) ∪ (U1 ∩ I2), then

i1 ioco s1 ∧ i2 ioco s2 ⇒ (hide V in i1‖i2) ioco (hide V in s1‖s2) .

We will show in the remainder of this section that the answer to Q1 and
Q2 is yes if s1 and s2 are specified as IOTSs (i.e., completely specified for
their input label sets). Otherwise the answer is no.

3.3.1 Parallel composition

In the following example we show that if we have two ioco-correct com-
ponent implementations, then the implementation does not remain correct
after parallel composition of the components.

Example 3.3.2 Regard the LTSs in Figure 3.4 on the next page. On the
left-hand side we show the specifications and on the right-hand side the cor-
responding implementations. The models have the following label sets: s1 ∈
LTS({x}, ∅), i1 ∈ IOTS({x}, ∅), s2 ∈ LTS(∅, {x}) and i2 ∈ IOTS(∅, {x}).
We see that s1 and i1 can perform one input x, after that s1 is underspecified
and i1 continues to accept x actions as it is input enabled. s2 and i2 are
identical and output two x actions (the suspension traces of s1 are given by

50

3.3. Central questions in compositional testing

s1‖s2

!x

i2

!x

!x

i1‖i2

!x

!x

s1

!x?x

!x

s2 i1

?x

?x

Figure 3.4: Counter-example for parallel composition; see Example 3.3.2

δ∗∪ δ∗·x·δ∗ and the suspension traces of s2 are given by {ε, x}∪x·x·δ∗). We
have i1 ioco s1 and i2 ioco s2.

After we take the parallel composition of the two specifications we get
s1‖s2, see Figure 3.4 (the corresponding implementation is i1‖i2). We see
that: out(i1 ‖ i2 after x) = {x} 6⊆ out(s1‖s2 after x) = {δ}; this means
that the parallel composition of the implementations is not ioco-correct:
i1‖i2 /ioco s1‖s2. 2

Analysis shows that i1 ioco s1, because ioco allows underspecification of
input actions (a state is underspecified for an action if it does not have any
outgoing transitions for the action). However, the semantics of the parallel
composition operator does not take underspecification of input actions into
account: although s2 can output a second x, it cannot do so in s1‖s2, because
s1 cannot input the second x.

It turns out that if we forbid underspecification of input actions, i.e., if
the specification explicitly prescribes for any possible input what the allowed
responses are, then we do not have this problem. In fact in that case ioco is
preserved over parallel composition, as we express in the following theorem.

Theorem 3.3.3 Let s1, i1 ∈ IOTS(I1, U1), s2, i2 ∈ IOTS(I2, U2), with
I1 ∩ I2 = U1 ∩ U2 = ∅.

i1 ioco s1 ∧ i2 ioco s2 ⇒ i1‖i2 ioco s1‖s2

2

Our running example (Example 3.2.1) shows the same problem illus-
trated in Example 3.3.2. Although the implementations of the money com-
ponent and the drink component are ioco correct with respect to their
specifications, it turns out that the parallel composition of imon and idrk is
not:

out(imon‖idrk after i¤1 ·make coffee) = {coffee, error}
out(smon‖sdrk after i¤1 ·make coffee) = {coffee}

Note that the internal signals are still visible as output actions. To turn
them into internal actions is the task of the hiding operator, discussed in
the next section.

51

Chapter 3. Compositional testing with ioco

hide x in s hide x in is i

?a

?a

?a

!y

?a !x

?a

?a !x ?a τ ?a τ

?a

?a

?a

!y

?a

Figure 3.5: Counter-example for hiding

3.3.2 Hiding

In the following example we show that if we have a correct implementation
according to ioco, then the implementation does not remain correct after
hiding (some of the) output actions.

Example 3.3.4 Consider the implementation i and specification s in Fig-
ure 3.5, both with input set {a} and output set {x, y}. The specification
can perform a choice between inputting an a or outputting an x; after both
actions it is underspecified. The implementation can do either one or more
a inputs or output an x, input one or more a actions, output y and end with
zero or more a inputs. We have i ioco s.

When we hide the output action x in the specification and implemen-
tation we get specification hide {x} in s, and implementation hide {x} in i
(see Figure 3.5 right-hand side). For input a we get: out(hide {x} in i after
a) = {δ, y} 6⊆ out(hide {x} in s after a) = {δ}; in other words the ioco re-
lation does not hold: (hide {x} in i) /ioco (hide {x} in s). 2

An analysis of the above example shows that s was underspecified, in the
sense that it fails to prescribe how an implementation should behave after the
trace !x?a. The proposed implementation i uses the implementation freedom
by having an unspecified y-output after x·a. When x becomes unobservable
due to hiding, the traces x·a and a collapse and become indistinguishable: in
hide {x} in s and hide {x} in i they both masquerade as the trace a. Now
hide {x} in s appears to specify that after a, only quiescence (δ) is allowed;
however, hide {x} in i still has this unspecified y-output. In other words,
hiding creates confusion about what part of the system is underspecified.

Also in this case, if we rule out underspecification, i.e., we limit ourselves
to specifications that are IOTSs then this problem disappears. The result is
that ioco is preserved under hiding, as is stated in the following theorem.

Theorem 3.3.5 If i, s ∈ IOTS(I, U) with V ⊆ U , then:

i ioco s ⇒ (hide V in i) ioco (hide V in s)

2

52

3.4. Underspecification

?button1 ?button1

?button2

?coffee

s

Figure 3.6: Underspecification in ioco

3.4 Underspecification

In this section we look into more detail at the ioco implementation relation
and the reason why ioco is not preserved by parallel composition and hiding.
We investigate several ways to fix this problem. We start with an analysis of
underspecified actions, as this is the root of the ioco-preservation problem.

Underspecification comes in two flavors: underspecification of input ac-
tions and underspecification of output actions. Underspecification of output
actions is always explicit; in an LTS it is represented by a choice between
several output actions. The intuition behind this is that we do not know
or care which of the output actions is implemented, as long as at least one
is. Underspecification of input actions is always implicit; it is represented
by absence of the respective input action in the LTS. The intuition behind
underspecification of input actions is that after an unspecified input action
we do not know or care what the behavior of the specified system is. This
means that after an unspecified input action we do not know what actions
can be considered correct. From a tester’s point of view this means we can
stop testing, because everything passes. In other words all behavior after an
unspecified input is correct (including quiescence). Following [BHR84] we
call this kind of behavior chaotic. Note that the interpretation of underspec-
ified actions is to some extent up to the tester. It is an interpretation of the
intended behavior of the system under test. Depending on the context there
is probably some behavior that the SUT should not show, like for example
resetting, halting, exploding, etc. In this text we have the point of view that
after an unspecified input action we do not know or care what the behavior
is and therefore we deem everything correct.

When we look at ioco we see that it does not completely adhere to the
above notion of underspecified behavior. ioco favors specified states over
underspecified states. This is easiest explained with an example.

Example 3.4.1 In Figure 3.6 we see a specification of a coffee machine. The
idea is to obtain coffee after pressing button1 followed by button2. Because
of a non deterministic input of button1 in the start state we can reach two

53

Chapter 3. Compositional testing with ioco

states after button1. One is specified for button2 and the other is not. In
the interpretation of underspecification discussed above, the behavior after
button1·button2 should be chaotic. However ioco looks at the behavior of
the states specified for the input action: ioco prescribes that out(s after
button1·button2) = {coffee}. This is behavior that gets us into trouble. 2

We have shown in the previous section that ioco is not preserved under
parallel composition and hiding because of the way it deals with underspeci-
fied input actions. Is there a way to fix our ioco-preservation problem? One
obvious solution is to stick to completely specified specifications: we have
shown that ioco is preserved under parallel composition and hiding when re-
stricted to IOTSs (ioco ⊆ IOTS×IOTS). We find this solution inadequate
because we like the flexibility to work with underspecified specifications. An
interesting approach might be to transform LTSs into IOTSs in a way that
complies with the notion of underspecification discussed above. There are
two other promising candidates. One is to change the semantics of ioco in
such a way that it complies with our notion of underspecification. The other
is to change the semantics of the parallel composition and hiding operators.
In the remainder of this section we investigate the following approaches to
preserve ioco over parallel composition and hiding.

• A transformation of LTSs to IOTSs in such a way that it complies with
our notion of underspecification. Theorem 3.3.3 gives us the wanted
preservation result.

• A change of the ioco definition in such a way that it does not favor
specified behavior over underspecified behavior.

• A new definition of the parallel composition operator in such a way
that underspecified input actions are taken into account and treated
properly, compliant with our notion of underspecified behavior.

3.4.1 Completion

A way to transform an LTS to an IOTS that is often found in the literature
is angelic completion [DNS95]. This form of completion adds to states that
are underspecified for a certain input action, a self-loop (a transition ending
in the same state) labeled with the lacking input action. When we do this
for all input actions we end up with an input enabled transition system. The
problem with this kind of completion is that it does not capture the notion
of implementation freedom that we discussed above, namely that after an
underspecified input action we do not know or care what the behavior of the
specified system is. Angelic completion expresses that we ignore unspecified
input actions and otherwise behave as specified. This does not help us in
our search to find an implementation relation that works directly on LTSs
as we illustrate in the following example.

54

3.4. Underspecification

τ

qΩ q∆

qχ

τ

I ∪ U I

Figure 3.7: Demonic completion process

Example 3.4.2 Let us look again at the counter-example for hiding in Fig-
ure 3.5 on page 52. The specification s prescribes that after the output action
x the input action a is underspecified. Therefore we would like to see that we
do not know or care what the behavior of the system is after x·a. To put it
formally we want out(s after x·a) = Uδ. Angelic completion adds a self loop
with a in the state reached after x. This means that out(s after x·a) = {δ}.
This does not capture the notion of implementation freedom that we are
looking for. 2

In translating LTSs to IOTSs, we propose to model the implementation
freedom after an unspecified input action via a chaotic process shown in Fig-
ure 3.7. We model chaotic behavior through a state qχ with the property:
∀λ ∈ U : qχ

λ
=⇒ qχ and ∀λ ∈ I : qχ

δ∗·λ
===⇒ qχ (where χ stands for chaos). Sec-

ondly, we add for every stable state q (of a given LTS) that is underspecified
for input a, a transition (q, a, qχ). This turns the LTS into an IOTS. After
[DNS95] we call this procedure demonic completion as opposed to angelic
completion. There is a practical choice to make in the operationalization
of what chaotic means. In this approach we choose to define chaotic as all
possible behavior relative to the label set of the transition system. Another
choice might be to allow all possible actions relative to a global label set.
Our choice is a pragmatic one, because it is easy to express with regular
transition systems. The problem with a global label set is that we need to
know which actions are input actions. A priori this is not clear and depends
on the specific transition system. A good solution for this would be to use
Heerink’s multi input output transition systems [Hee98]. This type of tran-
sition system identifies channels over which it can communicate with the
environment. This makes it possible to differentiate between input channels
and output channels and thus makes it possible to point out input actions
from a global label set.

Definition 3.4.3 gives the definition of demonic completion. The state
set Q is extended to Q′ by adding the demonic states qχ, qΩ and q∆. The
set of transitions T is extended to T ′ as discussed above: all stable states
that are underspecified for an input action in the label set of the machine
get a transition with the underspecified input action to qχ.

Definition 3.4.3 [demonic completion] Ξ : LTS(I, U) → IOTS(I, U) is

55

Chapter 3. Compositional testing with ioco

defined by 〈Q, I, U, T, q0〉 7→ 〈Q′, I, U, T ′, q0〉, where
Q′ = Q ∪{qχ, qΩ, q∆}, where qχ, qΩ, q∆ /∈ Q
T ′ = T ∪{(q, a, qχ) | q ∈ Q, a ∈ I, q a−−→/ , q τ−−→/ } ∪ {(q∆, λ, qχ) | λ ∈ I}

∪{(qχ, τ, qΩ), (qχ, τ, q∆)} ∪ {(qΩ, λ, qχ) | λ ∈ L}

Example 3.4.4 In Figure 3.8 we show the demonically completed specifica-
tion from the hiding counter-example of Figure 3.5 on page 52. The two final
states are underspecified for action a and therefore we added for both states a
transition labeled with a to the chaotic state qχ. The input action a after ac-
tion x is underspecified, therefore all behavior is allowed after a (chaos). At
the right-hand side we show the demonically completed specification (Ξ(s))
after hiding action x. We have out(hide x in Ξ(s) after a) = Uδ\{x}. This
is exactly the notion of underspecification that we are looking for. 2

An important property of demonic completion is that it only adds tran-
sitions from stable states with underspecified inputs in the original LTS to
qχ. Moreover, as expressed in Proposition 3.4.5, it does not delete states nor
transitions. The chaotic IOTS acts as a sink state: once one of the added
states (qχ, qΩ or q∆) has been reached, the chaotic IOTS will never be left.

Proposition 3.4.5 Let s ∈ LTS(I, U).

∀σ ∈ L∗δ , q′ ∈ Qs : s
σ

=⇒ q′ ⇔ Ξ(s)
σ

=⇒ q′

2

We use the notation “ioco ◦ Ξ” (ioco after Ξ) to denote that before ap-
plying ioco, the LTS specification is transformed to an IOTS by Ξ; i.e., to
put it formally i (ioco ◦ Ξ) s ⇔ i ioco Ξ(s). Theorem 3.4.6 expresses that
this relation is weaker than ioco. Note that despite the terminology, it is
a good thing that ioco ◦ Ξ is weaker, because ioco was too restrictive (in

τ

qΩ q∆

qχ

τ

I ∪ U I

τ

qΩ q∆

qχ

τ

I ∪ U I

?a ?a

?a !x

?a ?a

?a τ

Ξ(s) hide x in Ξ(s)

Figure 3.8: Demonic completion in combination with hiding

56

3.4. Underspecification

the sense that it prefers specified behavior over underspecified behavior).
Weaker in this case means that previously conformant implementations are
still conformant, but it might be that previously non-conformant implemen-
tations are now allowed with this new notion of conformance. This is easy
to understand. We do not change the already defined behavior of the tran-
sition system, therefore we will never make the set of allowed outputs after
a certain trace smaller. However, it might be the case that we make the
set of allowed outputs bigger after a certain trace, if this trace contains un-
derspecified behavior. When we look for example at Figure 3.6 on page 53
we see that the output of tea after button1·button2 is not allowed. However
after demonic completion it is allowed, because button2 is unspecified after
button1 (in the right branch).

Theorem 3.4.6

ioco ⊆ ioco ◦ Ξ

2

Note that the opposite of Theorem 3.4.6 is not true i.e., i (ioco ◦ Ξ) s 6⇒
i ioco s (as Example 3.4.4 and the counter-examples for parallel composition
and hiding of Section 3.3 show).

The results in this section make it possible to test an integrated sys-
tem by comparing the individual components to their demonically completed
specifications. If the components conform, then the composition of imple-
mentations also conforms to the composition of the demonically completed
specifications. The same holds for hiding.

Corollary 3.4.7 Let sk ∈ IOLTS(Ik, Uk) and ik ∈ IOTS(Ik, Uk) for k =
1, 2, I1 ∩ I2 = U1 ∩ U2 = ∅, V ⊆ U,

i1 ioco Ξ(s1)∧ i2 ioco Ξ(s2)⇒ i1‖i2 ioco Ξ(s1)‖Ξ(s2)

i1 ioco Ξ(s1)⇒ hide V in i1 ioco hide V in Ξ(s1)

3.4.2 From ioco to uioco

In this section we define the implementation relation uioco that has the
characteristics of ioco ◦ Ξ, but works directly on LTS specifications. uioco
uses a subset of the Straces, which we call Utraces, which stands for Uni-
versal traces.

Definition 3.4.8 [Utraces] Let s ∈ LTS(I, U).

Utraces(s) =def {σ ∈ Straces(s) | @q ∈ Qs, σ1, σ2 ∈ L∗δ , a ∈ I : σ = σ1·a·σ2

∧ s σ1==⇒ q ∧ q a
==⇒/ }

57

Chapter 3. Compositional testing with ioco

Intuitively, the Utraces are the Straces without the traces with under-
specified input actions; so-called underspecified traces. To put it in terms of
the definition above, a trace σ is underspecified if there exists a prefix σ1·a
of σ which can bring s via trace σ1 in a state q that is underspecified for a
(s

σ1==⇒ q and q
a

==⇒/).

When we use Utraces instead of Straces we obtain a variant of ioco that
we call uioco.

Definition 3.4.9 [uioco] Let s ∈ LTS(I, U), i ∈ IOTS(I, U)

i uioco s =def ∀σ ∈ Utraces(s) : out(i after σ) ⊆ out(s after σ)

In the following theorem we state that uioco is equivalent to ioco ◦ Ξ.
This equivalence is quite intuitive. ioco ◦ Ξ uses extra states to handle
underspecified behavior, which are constructed to display chaotic behavior.
If Ξ(s) reaches such a state, then all behavior is considered correct. uioco,
on the other hand, circumvents underspecified behavior, because it uses
Utraces.

Theorem 3.4.10

uioco = ioco ◦ Ξ

2

It is important to note that uioco is not compositional, because of the
same problems as ioco (see Example 3.3.2; underspecified input actions
are blocking). The benefit of uioco lies in the fact that we can test the
components with the same power as ioco ◦ Ξ without the extra effort of
demonic completion.

3.4.3 Changed semantics for the parallel operator

The last option we investigate is to change the semantics of the parallel
composition. The approach is reminiscent of demonic completion in that we
introduce transitions to a chaotic process. In Table 3.1 we show the SOS
rules for the new parallel composition operator. We denote the new parallel
composition operator with][.

We introduce three processes χ,∆ and Ω (demonic process). χ goes non-
deterministically via an internal transition to ∆ or Ω. Ω can do all possible
actions from L and ∆ is a quiescent state that can only do input actions.
The label sets I and L are relative to the process in question.

The parallel composition operator looks quite similar to the original def-
inition from Table 2.2. The main difference is when one of the processes
in the composition cannot do its input action; the situation where the par-
allel composition would be blocked. The new situation is that the process

58

3.4. Underspecification

Operator Transition rules

Demonic
process

χ τ−→∆ χ τ−→Ω

∀λ ∈ I : ∆ λ−→χ ∀λ ∈ L : Ω λ−→χ

B1][B2 1)
B1

µ−→B′
1, µ ∈ (LB1

\LB2
) ∪ {τ}

B1][B2
µ−→B′

1][B2

2)
B2

µ−→B′
2, µ ∈ (LB2\LB1) ∪ {τ}
B1][B2

µ−→B1][B′
2

3)
B1

µ−→B′
1, B2

µ,τ−−−→/ , µ ∈ UB1
∩ IB2

B1][B2
µ−→B′

1][χ

4)
B1

µ,τ−−−→/ ,B2
µ−→B′

2, µ ∈ UB2
∩ IB1

B1][B2
µ−→χ][B′

2

5)
B1

µ−→B′
1, B2

µ−→B′
2, µ ∈ LB1 ∩ LB2

B1][B2
µ−→B′

1][B′
2

Table 3.1: SOS rules for the new parallel composition operator

blocking the composition makes a transition for the unspecified input action
to the demonic process χ. We leave out the set of actions G over which
the processes synchronize, because we always synchronize over the intersec-
tion of the label sets, under the condition that for two systems r and s the
following restriction holds over their label sets: Ir ∩ Is = Ur ∩ Us = ∅.
When we compose two systems r and s the signature of the composition is
Ur][s = Ur∪Us and Ir][s = Ir\Us∪Is\Ur. The new definition preserves ioco,
as we show in the following theorem.

Theorem 3.4.11 Let sk ∈ IOLTS(Ik, Uk) and ik ∈ IOTS(Ik, Uk) for k =
1, 2 with I1 ∩ I2 = U1 ∩ U2 = ∅.

i1 ioco s1 ∧ i2 ioco s2 ⇒ i1][i2 ioco s1][s2

2

This result does not come as a surprise, because it is very similar to our
completion result. We disable blocking of input actions by jumping to a
chaotic process (via the underspecified input action).

We can define new semantics for the hiding operator in a similar fash-
ion, i.e., by changing the hiding rules when we encounter a state that is
underspecified for an input action. We can also test hiding with the uioco
relation. For uioco circumvents underspecified behavior that the new hiding
definition would lead to the demonic process.

59

Chapter 3. Compositional testing with ioco

The results of this section make it possible to do compositional testing
with ioco without first making the model input complete. We think that
this lowers the barrier to use compositional testing with ioco in practice.
Splitting functionality in components (divide and conquer) is a powerful
engineering technique that can now be used for model-based testing.

3.4.4 Chaos and convergence.

While treating our approach to cope with underspecification of input ac-
tions we swept something under the rug. The ioco theory demands that
the LTS specifications are strongly convergent. In short this means that
infinite τ -loops are forbidden. With the introduction of the chaotic process
in completion and the improved semantics we run the risk of introducing a
non-convergent system when we apply hiding. This happens when we hide
one of the output actions in the chaotic process: we introduce a τ -transition
from qΩ to qχ, combined with the τ -transition from qχ to qΩ we have a
τ -loop.

There are several ways to treat this issue. The most thorough solution
is to lift the convergence restriction from ioco. For example, we could in-
terpret infinite τ -loops as δ transitions, the way that [JJ05] do. We find
this approach is very interesting for further research. A more pragmatic ap-
proach is to forbid τ -transitions from qΩ (and q∆), or to restrict the output
set of the chaos process to the output set of the system after hiding. This
is not a nice solution, because it means that the chaos process is treated
differently from a normal process, or a normal transition system. Another
take on the issue is to stop testing when the specification hits chaotic be-
havior. Chaos means underspecified behavior and one can argue that before
continuing testing we should improve the specification. It is already very
helpful that we can identify this type of underspecification. This means that
once we hit the chaotic state qχ we stop testing and as a result we do not
encounter possibly introduced τ -loops. We investigate this line of thought
in the following paragraph.

Chaos and testing. Knowledge of underspecification can be used for test
generation and test execution. We can stop testing after an underspecified
input, because every implementation will always pass (the chaotic process
allows all possible actions). Automatic test generation will yield many spu-
rious tests if we do not keep track of underspecified behavior, for example
with special states or with special labels that signal chaotic behavior. With
demonic completion and our adapted parallel operator we can keep track
of underspecified behavior via the demonic process. We could for example
extend the test generation algorithm from Definition 2.5.5 with a rule that
whenever the state qχ (or χ) is in the set of states S we stop testing via
a pass verdict. On the other hand ending signaling that we have hit un-

60

3.5. Testing in context

derspecified behavior seems a good alternative, because this signals that an
undesirable situation has happened. In our experience, hitting underspec-
ified behavior while testing is in general undesired. Another option would
be to change the test generation algorithm in such a way that it reflects the
uioco relation, avoiding underspecification altogether.

An interesting situation occurs when testing two (or more) processes in
parallel and one of the processes becomes chaotic. What does this mean for
testing? Can we continue testing or should we stop? Technically we can
continue testing, since part of the composition is not chaotic. For this part
we can test its specified behavior. However from a practical point we argue
that it is better to stop testing and to update the model. Given that it is
practically possible, we think it is better to test specified behavior. If the
model hits underspecified behavior this might indicate that the model is not
good enough and needs fixing.

3.5 Testing in context

We have discussed the ioco-preservation properties mainly in the context
of compositional testing, but the results can easily be transposed to testing
in context. With testing in context we mean the following. Quite often
it is the case that the iut that we want to test cannot be tested directly,
but only indirectly via some kind of interface. With context we refer to the
software/hardware needed to access the iut.

Example 3.5.1 Suppose that we want to test the drink preparing compo-
nent of our example in Figure 3.2 on page 48 (left-hand side) and that we can
only test the whole machine, i.e., we have to test the drink component via
the money component (right-hand side). In that case we say that the money
component is the test context via which we access the drink preparing com-
ponent. In order to be able to test the drink preparing component we can
take the parallel composition of the money and drink preparing components
with hiding the commands between the components if necessary. This is
exactly what we have been investigating in the previous sections. 2

Suppose an implementation under test i is tested via a context c. The
tester interacts with c, and c interacts with i; the tester cannot directly
or only partially interact with i. Then we have Ii ⊆ Uc and Ui ⊆ Ic,
and Li is not observable for the tester, i.e., hidden. The tester observes
the system as an implementation in a context in the following way: C[i] =
hide (Ii ∩ Uc) ∪ (Ic ∩ Ui) in c‖i. Now Theorem 3.3.3 and Theorem 3.3.5
directly lead to the following corollary for testing in context.

Corollary 3.5.2 Let s, i ∈ IOTS occur in an error-free test context C[].

C[i] /ioco C[s]⇒ i /ioco s

61

Chapter 3. Compositional testing with ioco

Hence, an error detected while testing the implementation in its context
is a real error of the implementation, but not the other way around: an
error in the implementation may not be detectable when tested in a context.
This holds of course under the assumption that the test context is error free,
otherwise an error found in the combination test context and implementation
can also be the result of an error in the test context.

3.6 Conclusions

The results of this chapter show that standard ioco cannot be used for
compositional testing. The main problem is the underspecification of input
actions. When specifications are modeled as IOTSs, compositional testing
with ioco works fine; see Theorem 3.3.3 and Theorem 3.3.5.

The insights gained from these results can be explained in terms of un-
derspecification. ioco recognizes two kinds of underspecification: omitting
input actions from a state (which implies a don’t care if an input does oc-
cur) and including multiple output actions from a state (which allows the
implementation to choose between them). It turns out that the first of these
two is incompatible with parallel composition and hiding when using LTSs
as models.

We discussed three approaches in our search for a solution for composi-
tional testing: completion of LTS specifications, uioco and the new parallel
operator ‘][’. For completion we introduced the function Ξ to demonically
complete an LTS specification, i.e., transform an LTS to an IOTS in a way
that captures our notion of underspecification. This means that the above
results become applicable and the ioco theory with completed specifica-
tions can be used for compositional testing. The resulting relation is slightly
weaker than the original ioco relation; previously conformant implementa-
tions are still conformant, but it might be that previously non-conformant
implementations are allowed under the modified notion of conformance. This
is because ioco favors specified behavior over unspecified behavior. In that
sense ioco was too restrictive.

Testing after completion is in principle (much) more expensive since, due
to the nature of IOTSs, even the completion of a finite specification already
displays infinite testable behavior. We argued that for practical testing it
is necessary to keep track of chaotic behavior. This reduces the number
of tests and the length of tests dramatically because we can stop testing
when the specification becomes chaotic. An implementation relation that
partially remedies this problem is uioco. This relation enables us to use
the original component specifications, before completion, for compositional
testing (see Theorem 3.4.10). However, uioco is not compositional. It runs
into the same problems as ioco because the specifications are allowed to be
LTSs.

62

3.6. Conclusions

Our final approach to preserve ioco is to change the semantics of the
parallel operator to reflect the desired notion of underspecification. We
showed that ioco is preserved for this new operator, meaning that we can
use it for compositional testing. Like in the completion case, with practical
testing, we need to keep track of the introduced chaotic behavior.

What is the practical implication of the results of this chapter? What
is clear is that parallel composition and hiding cannot be used for the ioco
theory, because their semantics is inappropriate for testing. The new results
can be used as long as we stop testing when we hit underspecified behavior.
It is not entirely clear what testing with chaotic components means. On the
one hand we have the theoretical problem that we might introduce diver-
gent behavior. On the other hand we have the practical problem that it is
unclear if testing with chaotic components is worthwhile. We think that the
results show that underspecified behavior is an important concept for the
ioco theory and for testing in general and deserves a more prominent place.
It shows that concepts that are commonly used, like parallel composition,
cannot a priori be used for testing, when implementations are considered to
be input-enabled and specifications are not. On a more general level, with
the results of this section in hand, it might not be a bad idea to re-evaluate
the semantics of process operations, like the ones of Section 2.3.2. Is block-
ing a realistic property of the parallel operator? We think that the new
parallel operator that we introduced is a better alternative.

Traditionally conformance testing is seen as the activity of checking the
conformance of a single black box implementation against its specification.
The testing of communicating components is often considered to be outside
the scope of conformance testing. The results of this chapter show that
testing communicating components is not outside the realm of conformance
testing anymore.

Acknowledgments. We want to thank D. Lee and A. Petrenko for sharing
their knowledge of FSM testing and for their insightful discussions.

63

Chapter 3. Compositional testing with ioco

64

Chapter 4

Action Refinement and
Model-Based Testing

In this chapter we provide the rationale for our research in action refinement
in model-based testing. We start with an introduction into the problem
and we treat several action refinement examples that we collected during
our research. Next we introduce the action refinement ingredients that we
identify for model-based testing and define the research questions that we
want to answer. We continue with an overview of the research found in the
literature on action refinement and we discuss in how far existing theory can
help us in our research. We introduce an action refinement classification,
based on the action refinement scenarios and the examined existing action
refinement theory. We conclude with a discussion of the type of action
refinement we have chosen to investigate and that we will present in the
next chapter.

4.1 Introduction

T
he model in model-based testing plays a crucial part. If the model is
not a faithful representation of the behavior of the iut we may derive

useless test-cases from it. We may get test-cases that give a pass verdict
where they should give a fail verdict, or the other way around, test-cases
that give a fail verdict where they should give a pass verdict (unsound test-
cases). Another possibility are test-cases that are not executable because
they are incompatible with the iut, for example when they do not have the
right commands. What to do when we are in the situation that the model
is not a faithful representation of the iut? When we posses the model from
which we derived our test-set, we can correct it and regenerate the test-set.
But when we do not have the model, we can only change the test-cases.
We could of course change the model and/or test-cases ad hoc by hand,
but we find this error-prone and time consuming. The problem that we

65

Chapter 4. Action Refinement and Model-Based Testing

!i¤3

!play

?o¤3

pass failfail

?play?refund

?i¤3

specification

!o¤3 !game

test case

?δ?game

Figure 4.1: Video game example

investigate in this chapter is whether we can change the models and test-
cases in a controlled and automatic manner. We use the term refinement to
refer to the changing of a model or test-case. We introduce refinement with
an example.

Example 4.1.1 In Figure 4.1 we show an example of a specification (left-
hand side) and a test-case (right-hand side) of a video game. The specifi-
cation tells us that we can enter three euro, after which we can press the
refund-button to get our money back, or press the play-button to play the
video game (we use a subscript ‘i’ or ‘o’ to indicate whether the action is in
the input or output label set, as these label sets need to be disjoint). The
test-case tests the system by inputting three euro and pressing the play-
button, after which the response of the system is observed: only game is
considered to be a correct response.

Suppose that we want to refine the three euro input and output actions
into one euro followed by two euro or vice versa (we abstract from all the
other possibilities to compose three euro). Figure 4.2 on the next page gives
an example of a system specification and test-case that we want to obtain
via refinement. In the refined specification we see that we can either input
one euro followed by two euro, or vice versa, after which we can press the
play-button and play the video game, or press the refund-button and get
our money back (two euro followed by one euro, or vice versa). It is also
possible to get a refund after we have inserted one, or two euro. On the
right-hand side of the figure we see an example of a refined test-case. We
enter one euro, followed by two euro, after which we press the play-button
and observe the response of the system: only the observation of game leads
to pass. 2

The central question is how to obtain refined test-cases. In Chapter 5 we
present our approach and results in answering this question. This chapter is
a preliminary study of the issues that arise when studying action refinement

66

4.2. Action refinement scenarios

?play!o¤1

?i¤2

?i¤1?i¤2

refined specification

!o¤2
?refund

?refund

?i¤1

?refund

!o¤2

!o¤2

!o¤1

!game

!o¤1

!i¤2

!play

pass failfail

?δ?game

refined test case

!i¤1

?o¤1
?o¤2

Figure 4.2: Refined video game example

in model-based testing. To set the scene, we start with some refinement
scenarios that we collected during our research in Section 4.2. After that
we present the ingredients in our approach to action refinement in model-
based testing in Section 3.2. We give an overview of the existing action
refinement research and discuss to what extent we can use it for model-
based testing in Section 4.4. We end with a discussion of the specific type
of action refinement that we chose to investigate in Section 4.6.

4.2 Action refinement scenarios

During our research we collected several examples of action refinement in
model-based testing. Some examples were developed by ourselves, others
come from work with business partners. We present these examples, or sce-
narios as we call them, to give an introduction by example and to illustrate
the type of problems that we want to solve with our research. We start
with quickly introducing some basic refinement concepts that we use in the
scenarios.

4.2.1 Refinement function

In this thesis we restrict ourselves to a well-studied refinement approach,
called action refinement [GR01]. Action refinement replaces an action in
the model or test-case by more refined behavior. The idea behind action
refinement is top-down systems design: start with an abstract design that
captures the most important parts of the system and gradually add more
detail. Action refinement is a way to add more detail to a specification in
a formal and controlled manner. This is exactly what we want to do in
our model-based testing situation. In order to obtain a specification with
the required level of detail, we refine the abstract system specification using

67

Chapter 4. Action Refinement and Model-Based Testing

action refinement. Likewise, we want to obtain refined test-cases, using
action refinement.

In the action refinement scenarios we use a so called refinement function.
This function relates abstract actions to labeled transition systems. With
the refinement function we can record action refinement, the refined system
and the refinement transition system. We use a Final State LTS for the
refinement function: an LTS with an explicit end state.

Definition 4.2.1 [Final State Labeled Transition System] A Final State
Labeled Transition System (FLTS) is a six tuple 〈Q, I, U, T, start, final〉 such
that 〈Q, I, U, T, start〉 is an LTS. final ∈ Q denotes the end state, with start 6=
final.

We denote the class of all FLTSs over I and U by FLTS(I, U). We
denote the refinement function as: r : L → FLTS(I, U). When the label
sets are obvious we may leave them out in the refinement function. We use
the term refinement transition system to refer to the refinement behavior
expressed in an FLTS. We use the notation r(λ) to denote the refinement
transition system for abstract action λ. Thanks to the final state we know
when the refinement behavior ends successfully. We denote the refinement
of a transition system s (for example a specification or a test-case) by s[r].
We show how this notation is put to use in the following example.

Example 4.2.2 In Figure 4.3 we give some refinement transition systems
for our video game example from the introduction (see Example 4.1.1). With
these refinement transition systems we express what the concrete behavior
of the abstract action we refine should be. We see that the abstract output
action o¤3 is refined by the choice between o¤1 followed by o¤2 or in the
inverse order. The final state is denoted by a circle around the state. The
refinement transition system of the input action i¤3 is slightly more complex,
because we allow a refund of the thus far entered money. The refinements
of game, refund and play are straightforward (we do not change the behavior
of the abstract action). We only show the refinement transition system
for game. With these refinement transition systems we want to refine the
abstract video game system and test-cases as shown in Figure 4.1 on page 66.
2

!o¤1
?i¤1

?refund?refund
?i¤2

?i¤2?i¤1

!game

!o¤2!o¤1

!o¤2 !o¤1
!o¤2

o¤3 refinement LTS i¤3 refinement LTS game refinement LTS

Figure 4.3: Refinement transition systems for our video game example

68

4.2. Action refinement scenarios

4.2.2 Linear output splitting

The first scenario comes from a car navigation system manufacturer in the
Netherlands. In the example we treat the part that guides a driver to take
the next exit on the high way. A command in the abstract specification
consists of several commands in the implementation. We call it linear output
splitting, because as you will see, there is no branching behavior in the
refinement and only output actions are involved. We show the abstract
system and abstract test-cases and discuss the refined specification and test-
cases that we want to obtain.

Example 4.2.3 On the left-hand side in Figure 4.4 on the following page
we see part of a specification that guides a driver to take the next exit on
the highway in a number of meters, in this example 200 meters. In the
specification this consists of four sound parts (the parts are split up in this
way to enable reuse). The sound parts are 1) ‘Take the next exit’, 2) ‘in’
3) ‘200’ 4) ‘meters’. The implementation is more refined in that it also tells
the driver the number of the exit. In the middle of Figure 4.4 on the next
page we show the refined specification that we want to obtain. The refined
specification consists of six steps: 1) ‘Take the next exit number’ 2) the
number of the exit, we use ‘15’ for this example 3) ‘take the next exit’ 4)
‘in’ 5) ‘200’ 6) ‘meters’. We express this concrete behavior as a refinement
of ‘take the next exit’ as shown in the refinement transition system on the
right-hand side of the figure.

As some background information, to interpret the example, in the im-
plementation of the navigation system, the text is spoken using a specific
timing, based on the gps location of the car. This means that first the up-
coming exit is announced with: ‘Take the next exit, number 15’. When the
car is within 200 meters of the exit, the driver is advised to take the exit with:
‘Take the next exit in 200 meters’. We abstract from the timing information
in our example. On the left-hand side of Figure 4.5 on page 71 we show part
of an abstract test-case derived from the abstract specification. We abstract
from the test steps occurring before the observation “take the next exit”, de-
noted by the dashed arrow, and we abstract from the test steps occurring
after the observation, denoted by the triangle. With the term otherwise we
abbreviate all other possible observations. An example of a refined test-case
that we want to obtain is shown on the right-hand side of the figure. The
behavior of the abstract action take the next exit is split in three observation
steps. 2

4.2.3 Calculator

In this section we give an example of action refinement involved in testing a
calculator (such as a calculator found on a computer or a hand calculator).

69

Chapter 4. Action Refinement and Model-Based Testing

!take the next exit

!in

abstract specification

!number

!number

refined specification

!meters

!take the next exit

!in

!number

!meters

!take the next exit,
number

!number

!take the next exit

!take the next exit,
number

r(take the next exit)

Figure 4.4: Specification, implementation, refinement transition system for
navigation example

Where the specification talks about inputting numbers, in the implementa-
tion numbers are entered digit by digit.

Example 4.2.4 In Figure 4.6 on the next page we give the specification of
the calculator as an LTS (left-hand side). In the start state (q0) we can enter
a number by which we make the transition to state q1 (we write inumber for
inputting a number and likewise onumber for outputting a number). In q1

we can either input an operation (op) or choose to obtain a result by pressing
the ‘=’ key. If we input an operation we go to state q2, in this state we can
again input a number and go back to state q1. When we input ‘=’ in state q1

we make the transition to state q3 where the system will output the result
as a number.

The implementation has some more detail than the specification: num-
bers are entered digit by digit and there are four types of operations (+, −,
× and /). On the right-hand side of Figure 4.6 on the facing page we show
a specification with the required level of detail to generate test-cases from.

In Figure 4.7 on page 72 we show transition systems that define the re-
fined behavior of inumber and the operation op. In the refinement of inumber
(left-hand side), we enter numbers in our calculator by pressing single dig-
its. So instead of the single action inumber, entering a number consists of at
least one digit followed by zero or more other digits. In the refinement of the
operation (right-hand side), we can choose between 4 operations: +,−,×, /.

With this refinement information we want to refine the abstract test-
case on the left-hand side of Figure 4.8 on page 73 to the refined ones, for
example the one shown on the right-hand side. 2

70

4.2. Action refinement scenarios

?take the next

?take the

fail

fail

fail

?otherwise

?otherwise

?number

?otherwise

refined test case

next exit

exit, number

abstract test case

fail

?take the
next exit

?otherwise

Figure 4.5: Abstract and refined test-case for the navigation example

q0

q1

q2 q3

abstract specification

?inumber

!onumber

? =?op

?0 · · · 9

refined specification

?0 · · · 9

!number
?inumber

?0 · · · 9

− ×
=

+ /

Figure 4.6: Abstract and refined calculator specification

Notice that this rather simple example can easily be extended to a more
realistic calculator. Think of extending it with the possibility to correct
entries of numbers or operations, real calculations, more and more complex
operations, negative numbers, decimal fractions, etc. This also increases the
complexity of our refinements.

4.2.4 Remote procedure call

Remote procedure calls (RPC) are often used in computer programs. With
a remote procedure call, one can execute a procedure on a remote compo-
nent. In general, the implementation of an RPC first sends a request to the
remote party after which the remote party sends the answer to the requester.
Specifications tend to abstract from this 2-phase process. Let us illustrate
this with an example from an embedded system that controls a laser.

Example 4.2.5 In this example we use a (remote) procedure that returns
the status of the laser. We focus mainly on the refinement transition system
and abstract from the refined specification and test-cases (these are analo-
gous to the other examples). The specification uses the action LaserStatus

71

Chapter 4. Action Refinement and Model-Based Testing

to model the RPC. In the implementation it turns out to be implemented
by two actions: callLaserStatus followed by getLaserStatus. This means that
we cannot execute test-cases with the abstract action LaserStatus. In order
to obtain refined models and/or test-cases we define the refined behavior
by the refinement transition system in the middle of Figure 4.9 on the next
page. With the refinement transition system we want to refine the abstract
system on the left-hand side and obtain refined test-cases.

Note that this refinement is not complete in that it only models the pos-
itive behavior. What happens if we do not get an answer from our remote
party? This is an interesting scenario. If we want to relate the absence of
the answer to already specified behavior we need a way to express this. We
have not yet seen a solution for this. In case we do not connect it to already
specified behavior, we can express it as follows. On the right-hand side of
Figure 4.9 on the facing page we show an example of a refinement transition
system that takes other input into account. The triangle in the transition
system denotes a continuation of the transition system (from which we ab-
stracted). 2

An interesting observation with remote procedure calls is that the ab-
stract actions may not have direction (they are neither input nor output
actions, or one might say they are both), whereas in the refined case they
do have direction. This seems typical for system design that starts with
an abstract design and gradually adds information. Also some of the other
scenarios can be presented this way. For example the initialization of a laser
component in Example 4.2.7 can be seen as one abstract action without
direction: initialize laser. Likewise Example 4.2.8 features a direction-less
login action in the abstract specification. As far as we know this kind of
refinement has not been studied.

Another scenario encountered in practice, similar to the previous exam-
ple, is that in order to execute an RPC in the implementation we have to
perform some other actions. We show this behavior in the following example
in which we switch a laser on via the LaserOn command.

Example 4.2.6 The specification, left-hand side in Figure 4.10 on page 74,
prescribes that we switch a laser on by issuing the LaserOn command. In

r(op)

?0 · · · 9

r(inumber)

?0 · · · 9

+ − × /

Figure 4.7: Calculator refinement transition systems

72

4.2. Action refinement scenarios

!5

!=

fail

!9

?95

refined test case

pass

?otherwise

!inumber

!=

test case

?onumber

pass fail

?δ

Figure 4.8: Abstract and refined calculator test-cases

practice, the LaserOn command requires 2 parameters: a and b, that we have
to query first. In this example we query the parameter values sequentially.
We first issue requestA to signal another part of the system to give a value
for parameter a. We get the value via the returnA command. After we
obtain the values we can issue the switchLaserOn command with values a
and b. The refinement transition system is shown on the right-hand side of
Figure 4.10 on the following page.

2

For this kind of refinement it is important to know the dependencies be-
tween requestA and requestB. If they are allowed to be executed in arbitrary
order we need more complex behavior than the one shown in Figure 4.10 on
the next page, as this shows the refined behavior in the case that requestB
is executed after requestA. What to do if requestB is also allowed to occur
before requestA? We analyze this problem in some more detail, as well as
the impact on test-cases, in the following scenario.

abstract action

LaserStatus

!callLaserStatus

?getLaserStatus

r(LaserStatus)

!callLaserStatus

r(LaserStatus)

?getLaserStatus?other

Figure 4.9: Remote procedure call

73

Chapter 4. Action Refinement and Model-Based Testing

!LaserOn

?returnA

!requestB

!requestA

?returnB

!switchLaserOn

abstract action r(LaserOn)

Figure 4.10: Refinement example of parameter abstraction

4.2.5 Abstraction from underlying components

We continue with another remote procedure example from the laser compo-
nent, this time the initialization of the laser component. The specification
prescribes that the call consists of one action, but in the implementation the
call consists of several actions that can occur in arbitrary order.

Example 4.2.7 To initialize a component, we send it an init command.
When the component is initialized, it sends a ready command back and
when it has a problem to initialize, it sends an nready signal. Part of the
specification of the component’s behavior is shown on the left-hand side of
Figure 4.11 (the triangles indicate a continuation of the transition system).
On the right-hand side we show a test-case that tests if the iut returns a
ready or nready command after the init stimulus.

Based on the specification it seems to be one component, but it turns
out that in the iut it is implemented as two components A and B. This

?init

!nready !ready

abstract specification

!init

abstract test case

?nready ?otherwise

failpasspass

?ready

Figure 4.11: Abstract (part of) specification and test-case for the component
abstraction example

74

4.2. Action refinement scenarios

changes the initialization of the component in the following way: instead of
one initialization command, two commands need to be sent (one for each
component). After the component has received the initialization command it
sends a ready or nready message back. When the components can be initial-
ized in arbitrary order we get an interesting situation. In the most complex
case it is the parallel composition of the initialization of both components.

!readyB

!nreadyA

?initB?in
itA

?in
itA

?in
itA

!readyB

?initB

?initB

!re
ad

yA

!re
ad

yA

!re
ad

yA
!readyB

!nreadyA

refined specification 1

?initA

!readyA

?initB!nreadyA

!nreadyB !readyB

refined specification 2

!nreadyB!nreadyA

!nreadyA
!nreadyB

Figure 4.12: Refined specification for component abstraction

In Figure 4.12 we give two possible refined specifications: refined spec-
ification 1 initializes component A and B sequentially. We start with initA
and when we receive nreadyA we know that the initialization process failed.
When we receive readyA we continue with the initialization of component
B. We see that there are two possible states after the initialization of the
components, one where both components are initialized successfully and one
where one or both components are initialized unsuccessfully.

Refined specification 2 is more complicated. In this case we allow com-
ponents A and B to be initialized in arbitrary order. Like in the abstract
case, there are two end states of the initialization process, one for successful
and one for unsuccessful initialization (the state at the bottom of the figure
is the unsuccessful initialization state and the state at the bottom of the
parallelogram indicates successful initialization). Whenever we encounter
an nready response of one component, we ignore the nready response of the
other component and we go the unsuccessful termination state (another pos-
sibility is to also wait for the nready of the other component). When both

75

Chapter 4. Action Refinement and Model-Based Testing

!initA

?nreadyA

refined test case 1

pass fail

otherwise

!initB

?nreadyB

refined test case 2

otherwise

pass fail

!initB

refined test case 3

!initA

otherwise
?nreadyA

?nreadyB
?readyB

failpass

?readyB

pass failpass

!initA

?readyA
otherwise?nreadyA

failpass pass

?readyB
otherwise?nreadyB

!initB

?readyA

?nreadyB otherwise

failpass

?readyB

pass

?readyA

Figure 4.13: Refined test-cases for component abstraction

components are initialized successfully we end in the successful termination
state.

For test-cases we see a similar complexity for the refinement, or in some
sense it is even more complex. For the case where we allow the components
to be initialized in arbitrary order, we need several test-cases to test this
behavior. In Figure 4.13 we show three refined test-cases. Test-case 1 cor-
responds to refined specification 1 from Figure 4.12 on the previous page,
test-case 2 and 3 test the behavior of refined specification 2. Test-case 2
tests if the components can be initialized in the order B followed by A. In
test-case 3 we first send the initialization commands to A and B and then
check the observed responses. 2

The required refinements for the last example are not straightforward.
We want to express that the abstract action init should be replaced by the
independent actions initA and initB, like shown on the left-hand side in Fig-
ure 4.14. Likewise we want to express the refinement for ready and nready
as shown in the figure. The problem lies in combining the refinements. We
cannot simply replace the abstract actions by the behavior in the refinement
transition systems. There are dependencies across the refinements, for ex-

r(init)

?initB?initA

?initB ?initA

r(nready)

!nreadyB!nreadyA

!nreadyB !nreadyA

r(ready)

!readyB!readyA

!readyB !readyA

Figure 4.14: Refinement transition systems for component abstraction

76

4.2. Action refinement scenarios

ample readyA depends on initA in that it can only occur after initA. As we
will explain in Section 4.4, dependencies between actions is a weak point of
LTS specifications. In order to handle this kind of refinement we need to
keep track of the dependencies between refinements.

4.2.6 User interface refinements

A refinement that seems to fit rather nicely with action refinement is what
we dubbed “user interface refinement”. With this term we want to refer to
functionality that is implemented in a system and that needs to be user-
accessible via a user interface, for example a web-page. As an example we
use the login functionality of an operation system.

On an abstract level, logging into a system may be a direction-less ac-
tion. In a concrete implementation we need to provide more details, like
for example user name and password. The functionality to check a user
name - password combination is already there in the system, for example
via a remote procedure call. But when we provide this functionality via a
user-interface it is used in a different way. For example, the order in which
we give the user name and password, may be dictated by the user-interface.
The user-interface itself, might also add some behavior, for example if the
user repeatedly enters the wrong password, the system might for example
block.

Example 4.2.8 In Figure 4.15 on the next page we show on the left-hand
side the abstract action login as part of the abstract specification. In the im-
plementation, login is implemented by asking for a user name and password.
If these are correct, the login is successful, otherwise we have to reissue our
credentials. In the middle of the figure we give the refinement transition
system with the required level of detail for login. Based on this information
we want to refine an abstract specification and/or test-case. We give an
example of a refined test-case on the right-hand side. 2

The scenario can be enhanced to make it more realistic. For example, as
mentioned above, by taking action if the user logs into the system with the
wrong password. After several tries (quite often 3 times) we might want for
example to block the user from the system, or prevent the user from logging
in for the next hour, etc.

This kind of refinement can be seen in many applications. Take for
example an electronic banking system. Operations for bank transactions
are already there, only to offer it via a user-interface, the functionality is
presented in a user friendly way. For example by asking parameters in a
sequential way, or by informing the user via error/information messages.

77

Chapter 4. Action Refinement and Model-Based Testing

login

Part of specification

!username

!password

?ok?nok

Part of refined test case

fail

otherwise

?password

!ok

?username

!nok

r(login)

Figure 4.15: Specification, refinement transition system and test-case for
login example

4.2.7 Database transactions

Databases are another example where on an abstract level the actions seem
simple: create, read, update and delete. When we want to test a database
implementation the abstract information is not enough, especially if we want
to take transactions with possible aborts into account.

Example 4.2.9 On the left-hand side of Figure 4.16 on the facing page, we
show part of a specification that stores some data in a database via the store
action. The implementation uses the two-phase commit protocol to ensure
atomic transactions. In the middle of the figure we show the refinement
transition system for store. First we prepare the transaction with the prepare
command. When we receive ok prepare we continue with commit, and when
we receive nok we try again. When commit is followed by ok commit we are
done with the refinement of store and when it is followed by nok we retry
the commit action.

2

This example can be extended to incorporate more complex behavior.
In most database systems there is a limit on the amount of retries. It is also
possible to take transactions into account that consist of other transactions.

4.3 Requirements on action refinement for model-
based testing

In Figure 4.17 on page 80 we give an overview of the ingredients of action
refinement for model-based testing. On the left-hand side we see the ab-
stract system specification, the refined system specification and the system

78

4.3. Requirements on action refinement for model-based testing

?ok prepare

!commit

!prepare

r(store)

store

Part of specification

?ok commit

Part of refined test case

?ok prepare

fail

otherwise

!prepare

?ok commit

?nok

?nok

otherwise

fail

!password

!nok

!nok

Figure 4.16: Specification, refinement transition system and test-case for
database example

implementation. The objects on the right-hand side denote test-suites, also
in increasing level of concreteness. From top to bottom, left to right we
encounter:

Abstract system specification is a (formal) model of the system imple-
mentation. We call it abstract to indicate that to use it for testing, we
still need to refine it. The specification misses relevant information for
testing the implementation.

Refined system specification is the refinement of the abstract system
specification, this time with the required level of detail to test the
system implementation.

System implementation is the system that we want to test, also known
as iut (Implementation Under Test); it is a real system in the physical
world.

Abstract test-suite is the test-suite that is derived from the abstract sys-
tem specification. As with the abstract system specification, the test-
cases lack information to test the system implementation (they are in
need of refinement).

Refined test-suite is a test-suite with the required level of detail to test
the system implementation. There are potentially two ways to derive
such a test-suite. One way is to refine the abstract test-suite, another
way is to derive test-cases from the refined system specification.

Executable test-suite is a test-suite in the physical world that we can
execute against the system implementation. This results in a verdict

79

Chapter 4. Action Refinement and Model-Based Testing

conformance
relation

derivation
test

derivation
test

verdict

specification
system

abstract

system
refinement

refined
system

specification

system
implementation

test case
refinement

test suite
abstract

test suite
refined

test
implementation

concrete world
formal world

test suite
executable

(iut)
implementation

system
application

test

Figure 4.17: Refinement ingredients

whether or not the implementation is correct with respect to the re-
fined (or abstract) system specification.

Central to the research in action refinement for model-based testing is
how to obtain refined test-cases; test-cases with the required level of detail.
Figure 4.17 shows that there are two ways to obtain a refined test-suite.
One way is to refine an abstract specification and derive a test-suite from
the refined specification. The other is to refine an abstract test-suite that is
generated from an abstract specification. The first approach uses transition
system refinement and the other approach uses test-case refinement. We find
it an important requirement that these two refinements result in equivalent
test-suites. We use completeness with respect to ioco as a requirement on
our action refinement approach: refinement of a complete test-suite should
result again in a refined complete test-suite. Likewise, we should be able to
derive a complete test-suite from a refined specification.

Our research questions, in terms of the concepts of the figure, are:

• How, and under what restrictions can we refine system specifications
to use them for model-based testing?

• How, and under what restrictions can we refine test-cases?

• Under what circumstances is a refined test-suite, obtained by deriving
tests from a refined specification, equivalent to a test-suite obtained by
test derivation (from the abstract specification) followed by test-case
refinement?

80

4.4. Action refinement results

• What conformance relations can we use between the abstract or refined
specification and the implementation, and what is the relation between
these conformance relations?

4.4 Action refinement results

During our research we have studied the action refinement literature for
results that we could use in our own research. In this section we give
an overview of action refinement research found in the literature [GR01,
vGG89]. We end with an analysis of which parts we can re-use and which
parts we have to develop ourselves. We delay the details of how to do action
refinement to the next chapter, where we treat this in great detail.

We denote the refinement of a single action a to B in A as: A[a → B],
where A and B are behavior expressions, for example expressed as process
algebraic terms or transition systems. The next example shows action re-
finement in operation on transition systems.

Example 4.4.1 Suppose that A is a transition system that consists of two
transitions: a followed by b (left-hand side of Figure 4.18). We refine the
abstract action a by more complex behavior B. Let B be the transition
system in the middle of Figure 4.18: a1 followed by a2. The result of A[a→
B] is the system on the right in which the transition with a is replaced with
a1 followed by a2. 2

For quite a while (roughly 1989 - 1995) action refinement enjoyed a
broad interest in the process algebra research community. A big part of
the research went into looking for equivalence notions to compare models
(expressed in some process algebraic language). This is understandable as
many contributions to action refinement research took place in comparative
concurrency semantics research. As the name suggests, comparing models of
concurrency is important in this area. The central question in the research
was as follows (taken from [GR01]). For action refinement as an operator in

A

a

b

B A[a→ B]

a1

b

a2

a1

a2

Figure 4.18: Simple action refinement example

81

Chapter 4. Action Refinement and Model-Based Testing

a process algebra, given a candidate equivalence notion ', we want to find
the coarsest relation ≡ contained in ' that is a congruence for the operators
of the (process algebraic) language. This means mathematically that we are
looking for an operator that has the following (congruence) properties:

1. whenever B ≡ C then A[a→ B] ≡ A[a→ C];

2. whenever A ≡ B, then A[a→ C] ≡ B[a→ C].

To put it into words, this means that:

1. When we have two equivalent systems B and C (for example transition
system models), then refining an action a in a system A to either B or
C should give equivalent refined systems.

2. When we have two equivalent systems A and B, then refining the action
a in system A to more refined behavior C should be equivalent with
refining the action a to C in system B.

The main requirement for the first part of the congruence question to
hold, is that one makes a clear distinction between deadlock (where a system
can do nothing at all) and termination (where a system can do nothing but
terminate, i.e., relinquish control). The distinction is easily made if one
models termination as a special action, or as a special state. We illustrate
why we need this distinction with the following example.

Example 4.4.2 Let A = a; b and B1 = c (the execution of c leading to suc-
cessful termination) and B2 = c; 0 (the execution of c leading to deadlock).
B1 and B2 are equivalent when ignoring termination, but A[a → B1] can
perform b after c, while A[a→ B2] cannot. 2

Central to the second part of the congruence issue is atomicity. Where
the actions in the abstract system are atomic (i.e., indivisible) by default,
the question arises whether the same holds when we refine such an indivisible
abstract action. We illustrate this issue in the following example.

Example 4.4.3 On the left-hand side of Figure 4.19 on the next page we
see an abstract specification with the functionality a followed by b, or b
followed by a. In interleaving semantics, a ‖ b (a and b happen in paral-
lel) is equivalent with a; b + b; a (the choice between a followed by b or b
followed by a). The interesting point is that although they are equivalent,
we get different action refinement results for these two situations when we
replace action a by a1 followed by a2 in the original process terms. We show
two possible refinement results in the middle and on the right-hand side of
Figure 4.19 on the facing page. In the situation that the actions a and b
occur in parallel in the abstract specification, we get the system (a1; a2) ‖ b.

82

4.4. Action refinement results

This is the system on the right-hand side and corresponds to non-atomic
refinement. In case of a choice between a; b and b; a we get the system in
the middle: (a1; a2); b + b; (a1; a2). This corresponds to atomic refinement.
In other words, the trace a1·b·a2 is a valid trace of the non-atomically refined
system, but not of the atomically refined system. 2

The example shows two kinds of action refinement: atomic and non-
atomic action refinement. In atomic action refinement, we treat the sequence
of actions in the refinement again as atomic. In other words, the sequence is
indivisible and is executed in an all or nothing manner. This means that no
actions can interleave within the refinement. In terms of the example above,
when we atomically refine the abstract specification, this means that action
b cannot interfere with the actions in the refinement a1; a2 (the refined spec-
ification in the middle). With non-atomic refinement, actions are allowed
to interfere with the refined actions. In the refined system on the right we
see that non-atomic action refinement allows action b to occur between the
actions a1 and a2.

To be more precise, central to atomic and non-atomic refinement are
the dependencies between actions. Actions that depend on each other are
ordered: when action b depends on action a this means that action b can
only occur after action a has occurred. When action a and b are independent
of each other they can occur in arbitrary order. An example of independent
actions are actions that occur in parallel, hence the relation with atomicity.
In atomic refinement the sequence of actions in the refinement is considered
as one action. In non-atomic refinement the actions in the refinement are
considered to be individual actions with individual dependencies. In terms
of Example 4.4.3 this means that in the choice scenario ‘a; b + b; a’, a and b
depend on each other. When we refine a into a1; a2, a1, a2 and b depend on
each other, meaning, b has to wait until a1 and a2 are finished and cannot
occur after a1, i.e., before a2. In the parallel scenario ‘a‖b’, a and b are
independent of each other. In this case when we refine a into a1; a2, a1, a2

and b are independent of each other. This means that b can occur after a1

abstract specification

a1

b

b

a2

a2

ba1

ba1

b

a2

a2

atomic refined non-atomic refined
specification specification

b a

ba a1

Figure 4.19: Atomic versus non-atomic refinement

83

Chapter 4. Action Refinement and Model-Based Testing

and before a2 (this is the situation on the right-hand side of Figure 4.19 on
the previous page).

The crux in the discussion about (non) atomic action refinement is con-
currency. The models of concurrency found in the literature can roughly
be distinguished in two kinds: those in which the independent execution
of two processes is modeled by specifying the possible interleavings of their
(atomic) actions, and those in which the causal relations between the ac-
tions of a system are represented explicitly [vGG89]. This is also known
as interleaving semantics versus true concurrency semantics. We refer to
[Mon90] for an overview on the many true concurrency semantics. One can
define action refinement as an operator on transition systems that is well
defined up to strong bisimilarity. However, action refinement as an operator
on transition systems does not distribute over parallel composition. This
means that action refinement as an operator on transition systems is not
usable for non-atomic refinement. It does hold that both strong and weak
bisimilarity are congruences for atomic action refinement [DG91].

In order to get a non-atomic refinement operator on labeled transi-
tion systems that distributes over parallel composition, one has to impose
strong restrictions. When refinement is disallowed for all actions that de-
cide choices, as well as all actions that occur concurrently with themselves
strong bisimilarity is a congruence for the resulting operator ([CvGG92]).
However, this operator no longer distributes over choice.

It turns out to be rather difficult to use non-atomic action refinement
with interleaving semantics. A solution to this problem that has received a
lot of attention in the literature is to move to more expressive models than la-
beled transition systems, in particular so called true concurrency semantics.
An example of models with true concurrency semantics are event structures.
As a side step we illustrate how non-atomic action refinement works out for
event structures. For this cause we introduce a simplified version of an event
structure with enough information to explain the principle.

Definition 4.4.4 [Simplified Event Structure]
A simplified event structure is a 4 tuple 〈E,#,≤, l〉 where

• E is a set of events;

• # ⊆ E × E is the conflict relation;

• ≤⊆ E × E is the causality relation;

• l : E → L is the labeling function.

Example 4.4.5 Figure 4.20 on the facing page shows the event structures
for a ‖ b and a; b + b; a. We can read them in the following way. A node
stands for an event, the label next to the node is the label of the event.

84

4.4. Action refinement results

An arrow represents the causality relation and a dashed line represents the
conflict relation. As we can see, in contrast to the LTS with interleaving
semantics from Example 4.4.3, these two event structures are not identical.
a ‖ b is represented by the events a and b with no causality or conflict
relations. This means that the events a and b can be executed independently
of each other. a; b + b; a is represented by four events. We have a → b or
b → a with the (top) events a and b in conflict. This reads as: either a
followed by b or b followed by a (but not both).

When we refine a into a1; a2 we see the strength of event structures.
Figure 4.21 on the next page shows the refined event structures for (a ‖
b)[a → a1; a2] and (a; b + b; a)[a → a1; a2]. In interleaving semantics we
would have to make a choice between atomic or non-atomic refinement. In
true concurrency semantics the choice is made automatically, because the
knowledge of concurrency is now in the model. As a result we get a1; a2 ‖ b
and a1; a2; b + b; a1; a2, as conforms to our intuition. 2

It turns out that isomorphism of event-based models gives rise to a
congruence. However, this relation is rather strong and a large part of
the literature on action refinement is devoted to the quest for alternative
congruences, in particular ones that are weaker (less distinguishing), like
history-preserving bisimulation (see for example [vGG89]). Another ap-
proach is to use less distinguishing models than event-based models, for
example causal trees ([DD89, DD93]). To obtain the coarsest congruence,
the minimal amount of information one must add is to distinguish related
beginnings and endings of all actions. This is called the ST-principle, in-
troduced by Van Glabbeek and Vaandrager [vGV87]. ST-bisimilarity is an
equivalence relation based on the ST-principle and the coarsest congruence
contained in strong bisimilarity.

Related to atomicity is the distinction between syntactic and semantic
refinement, which for quite a while was seen as an important dichotomy in
action refinement research. Syntactic refinement refers to refinement on the
syntax level of a process algebra, whereas semantic refinement refers to re-
finement on the level of the semantics of a process algebra (for example LTS
SOS rules). For atomic refinement both approaches give similar results. For
non-atomic refinement, semantic refinement turns out to be more appropri-
ate, because dealing with concurrency is more difficult for syntactic action
refinement.

a b a

b

b

a

a ‖ b a; b + b; a

Figure 4.20: Example of an event structure

85

Chapter 4. Action Refinement and Model-Based Testing

a1 b a1 b

a1

(a ‖ b)[a→ a1; a2] (a; b + b; a)[a→ a1; a2]

a2

b

a2

a2

Figure 4.21: Refinement on event structures

This is the quest for the coarsest congruence in a nutshell. We will not
treat it in more detail, because for our research and for this thesis, we do
not reuse much of the results of this research. We encourage the interested
reader to take a look at the cited references. A lot of effort in the action
refinement research went into the quest for the coarsest congruence. After
this puzzle was solved the field has been deserted again. This is a pity
because the research after the coarsest congruence is not directly applicable
for our research. The research found in the literature, like [GR01], provides
a good basis for the atomic refinement of transition systems. How to refine
test-cases, how to treat inputs, outputs and the absence of outputs are
examples of interesting problems that we need to investigate.

4.4.1 Relevance for model-based testing

What part of the research on action refinement can we re-use for our test
oriented research? Which parts do we have to solve ourselves? What are
the specific characteristics of our domain? To start with the last one, we
identify inputs, outputs and quiescence.

Inputs, outputs and quiescence. The theories found in the action re-
finement literature do not take inputs, outputs and quiescence into account
(the actions do not have direction). This means that we have to take care of
this ourselves. In general we can reuse the approaches found in the literature
for transition system refinement, but we have to be careful not to introduce
or break quiescence in our refinements.

Example 4.4.6 In Figure 4.22 on the facing page we show an abstract
system that consists of one input action: a (left-hand side). An abstract
test-case to test this system first does an observation to see that the system
is quiescent and then performs a. When we refine a to a1; a2, where a1 and
a2 are output actions, δ is no longer a valid first observation. This may lead
to unwanted results. We explain in Chapter 5 how to handle this situation.

2

86

4.4. Action refinement results

?a

s

?δ

!a

?otherwise

fail

pass

t

Figure 4.22: Quiescence in test-cases

Labeled transition systems. As we have shown in Section 2.5, the ioco
test theory is based on labeled transition systems. This means that non-
atomic action refinement is difficult. There is some theory for non-atomic
action refinement on LTSs, but these theories are quite complex and put
heavy restrictions on the types of refinements.

An option would be to adapt the ioco theory to event structures. This is
an interesting idea, however there are some limitations to event structures.
For example, it is hard, if not impossible to express infinite behavior in a
finite way, like the way loops work in an LTS. Another issue is that our
test-tooling is based on LTSs. This would mean that we have to change our
test-theory and our tooling.

Test cases. Action refinement is not defined for test-cases. We cannot reuse
the existing theory, because of the special nature of test-cases. For example,
in an observation step, a test-case observes all outputs of the iut. In the
refined test-case, we have to observe all refined output actions. We do not
get these with the standard action refinement theory. Another interesting
point is that, where the refinement of a transition system leads to one refined
transition system, the refinement of a test-case may lead to several refined
test-cases, as we show in the next example.

Example 4.4.7 Let us look again at the abstract test-case of our video
game example in Figure 4.1 on page 66: we input three euro, we press the
play button and we expect to play a game. Suppose that we refine i¤3 to
i¤1 followed by i¤2, or i¤2 followed by i¤1. This means that instead of the
action i¤3 we can think of several test steps to test the refined behavior:
we can enter one euro followed by two euro, or vice versa, we can perform
a refund in between, etc. In other words, the refinement of the abstract
test-case may result in more than one test-case! 2

87

Chapter 4. Action Refinement and Model-Based Testing

4.5 Action refinement classification

In order to talk about action refinement in model-based testing, it is help-
ful to have an idea of the relevant concepts that play a role. We have
already seen some concepts in Section 4.4, for others we were inspired by
the scenario’s in Section 4.2. In this section we propose an action refinement
classification. It is a pragmatic classification and we do not claim it to be
complete. The concepts were developed during our research based on the
scenarios and problems that we encountered. Our action refinement classi-
fication focuses primarily on the behavior of the refinement. As far as we
know this is new. Our classification consists of the properties: atomicity,
linearity, boundedness, initiative and observability. We have used this classi-
fication to direct our research and we use it to position our action refinement
research of Chapter 5 and to make the possibilities and limitations clear.

Atomicity is an important concept in action refinement. In atomic refine-
ment we treat the refined behavior again as atomic, i.e., indivisible, whereas
in non-atomic refinement this is not the case. We discussed the concept
atomicity in Section 4.4. As we have seen in the previous section, the intu-
ition behind refinement of LTSs is that transitions in the abstract system or
test case are replaced by more complex behavior. We illustrated in Exam-
ple 4.2.6 that this approach does not work for non-atomic refinement. We
treat atomic refinement in more detail in Chapter 5.

Linearity expresses whether branching occurs in the refinement behavior.
In case of linear refinement this is not the case, and in case of non-linear or
branching refinement it is. The navigation scenario of Example 4.2.3 is an
example of linear refinement, whereas the refinement of output action o¤3
in Figure 4.1 on page 66 is an example of refinement with branching be-
havior. We find linearity an important concept, because composition plays
an important role in action refinement research (especially for LTS-based
systems). Non-linear behavior indicates behavior that is the result of com-
position (parallelism or choice).

Boundedness refers to bounded or finite behavior. In case the refinement
behavior is bounded, this means that the refinement behavior ends in a finite
number of steps. Loops in a refinement introduce unbounded, or potentially
infinite behavior. The refinement of input action i¤3 in Figure 4.3 on page 68
(treated in Example 4.2.2) is an example of unbounded behavior. When we
always press the refund button after inserting the one or two euro coin, we
create infinite behavior without “leaving” the refinement transition system.
For LTSs, unboundedness may seem trivial, because they support it in a
natural way. To action refinement in general it is important, because for
example event structures do not support unbounded behavior (not in a finite

88

4.5. Action refinement classification

?a

?b1

?b2

initiative preserving
refinementabstract specification

?a

?b

?a

!b1

!b2

refinement
initiative switching

Figure 4.23: Preservation of initiative example

way).

Initiative refers to the direction of the action, i.e., input, output or no
direction. Initiative preserving refinement of input actions means that all
transitions starting in the start state of the refinement transition system are
input actions (this also means that it does not start with an internal action).
For output refinements, preservation of initiative means that at least one of
the transitions starting in the start state is an output action. For the input
actions we need all transitions to start with an input action, because it takes
only one output action to destroy quiescence. For the output actions it is the
other way around. We need at least one transition to start with an output,
because this preserves non-quiescence. If none of the transitions start with
an output action, this might introduce quiescence where previously there
was none. Preservation of initiative has the result that quiescence of the
abstract system is preserved in the refined system. We illustrate this in the
following example, see also Example 4.4.6.

Example 4.5.1 In Figure 4.23 we see an abstract specification (left-hand
side) where we can do a followed by b; both are input actions. We refine
a to itself and b to b1; b2. We consider two cases: one where b1 and b2

are input actions (middle), the other where b1 and b2 are output actions
(right-hand side). The system in the middle preserves the initiative: in the
abstract system we have the input action b and in the refined system the
input action b1. The system on the right-hand side does not preserve the
initiative, because b1 is an output action (the initiative is switched from
input to output). Preservation of initiative is important for quiescence. We
see that the abstract system s is quiescent after a: δ ∈ out(s after a). With
initiative preserving behavior we keep this behavior. δ ∈ out(s[r] after
a), where a is a trace of r(a). With refinements that do not preserve the
initiative, like the one on the right-hand side, we lose this behavior: δ /∈
out(s[r] after a) (= {b1}). 2

89

Chapter 4. Action Refinement and Model-Based Testing

q1

q3

q2

q0r0 s0

r1 s1

q2

q1

q0

?a1?b ?b

s[r]r(b)r(a)s

?a1

?b

?a1

?b

?a

?b

Figure 4.24: Observability example

Quiescence is an important concept in the ioco theory. Therefore we
find preservation of initiative an important property. In case the initiative
is not preserved, it is immediately clear that we cannot use ioco.

Observability in action refinement means whether we can distinguish re-
fined behavior from abstract behavior in the refined system. In particular do
we know when the refined behavior (successfully) terminates? When we do
not know if the refinement ended or not, we can run into difficulties relating
refined behavior to abstract behavior, and vice versa, as we will illustrate
with the following example.

Example 4.5.2 In Figure 4.24 we show the refinement of a system that
can perform a followed by b. We refine a into a system that can perform
a1 followed by b followed by a1 ad infinitum. We refine b to itself, i.e., the
action is unchanged. The resulting refined system is depicted on the right.
The issue with this system from an observability point of view is that in the
refined system we may not know when refined behavior stops, based only
on knowledge of the refined system. Does the execution q0a1q1bq2 originate
from the refinement of a or a·b? If it is possible to tell where the execution
originated from, we say that the refinement is observable, otherwise it is
unobservable. 2

4.6 Atomic action refinement in model-based test-
ing

When we set out with our research, our goal was to have as little restrictions
as possible on the types of refinements that we allow. In this section we
explain the constraints that we choose and the reasons behind them.

In terms of the classification from Section 4.5, our action refinement
approach is atomic, allows non-linear and unbounded behavior, and restricts
to observable refinements.

The restriction on atomicity is a pragmatic one. As we discussed in

90

4.6. Atomic action refinement in model-based testing

Section 4.4, non-atomic refinement on transition systems is quite difficult
and cumbersome. We want to reuse the ioco theory and therefore we decided
to focus on atomic action refinement for the ioco test theory. Hence we also
need the restriction on initiative in order to relate quiescence in the abstract
and refined case.

We can express our constraints in a more formal manner on the type of
refinement function that we allow. We start with the formal definition of
the constraint followed by an explanation in words. Let r : Lτ → FLTS be
a refinement function.

Definition 4.6.1

1. Preservation of input initiative. Let a ∈ I, and let r(a) be the refine-
ment transition system of a, then

init(r(a)) ⊆ Ir(a) (4.1)

This means that the refinement transition system of an input action
is only allowed to start with an input action (no output action or τ
action).

2. Preservation of output initiative. Let x ∈ U , and let r(x) be the
refinement transition system of x, then it should hold that

startr(x)
τ−−→/ ∧∃y ∈ Ur(x) : startr(x)

y−→ (4.2)

This means that the refinement transition system of an output action
should start with at least one output action and is not allowed to start
with an internal action.

3. Internal actions remain internal actions.

r(τ) = 〈{start, final}, ∅, ∅, {(start, τ, final)}, start, final〉 (4.3)

The refinement transition system of τ is fixed. This is because we do
not want abstract internal actions to become observable in the refined
system.

4. No forgetful refinement.

∀µ ∈ L : startr(µ)
ε

==⇒/ finalr(µ) (4.4)

No refinement transition system, except r(τ), can perform the empty
trace between the start and final state. This property is called forgetful
refinement [vGG01] (forgetting actions by replacing them with the
empty trace).

91

Chapter 4. Action Refinement and Model-Based Testing

5. No outgoing transitions in the final state. Let µ ∈ Lτ , r(µ) be the
refinement transition system of µ, then

init(finalr(µ)) = ∅ (4.5)

This means that the final state of a refinement transition system has no
outgoing transitions. With this constraint we know that final signals
the end of a refinement.

An alternative for constraint 3 is to let the refinement function only
range over L and to preserve internal actions in the way systems and test-
cases are refined. An alternative for constraint 5 is to add the constraint of
no outgoing transitions in the final state to the FLTS definition. We come
back to these restrictions in Section 5.6 and illustrate the consequences of
the restrictions in terms of the results of Chapter 5.

An implicit constraint is that the FLTS has only one final state. This
means that the refined behavior ends at one place and it is not possible to
model refinements that have several successful endings. This is an interesting
area for further research. To lift this constraint, one has to find a way to
relate the multiple end-states of the refinement transition system to the
abstract system.

With these restrictions we are able to tackle most of our scenarios. In
Table 4.1 we show the classification of the scenarios that we treated in
Section 4.2. On the left-hand side we show the scenarios and on the top we
show the classes. In order to fit the table on the page we used the following
abbreviations: A for atomic and NA for non-atomic, L for linear and NL
for non-linear, B for bounded and UB for unbounded, IP for initiative-
preserving and ID for initiative destroying, O for observable and NO for
not-observable. This works as follows: the linear output splitting example
of Section 4.2.2 is classified as atomic, linear, bounded and observable.

For the RPC and user interface scenario we put a question mark for
initiative. It depends on the initiative of the abstract action whether the
refinement is initiative preserving or not, but in the scenario we abstracted
from the initiative. The scenario is initiative preserving if LaserStatus is seen
as an output action.

The component abstraction example is the most complex scenario. The
case where the initialization of components A and B can occur in arbitrary
order is an example of non-atomic refinement, it is non-linear (there is choice
involved), bounded (no loops) and initiative preserving. It is not clear if the
scenario is an example of observable refinement. For example with which
part of the abstract system does the trace initA·readyA correspond? Did we
already complete the abstract actions init and ready?

The scenario that we cannot handle with atomic action refinement is the
initialization scenario of Section 4.2.5, which requires non-atomic refinement.
Refinements of abstract actions without direction, can be handled as follows.

92

4.7. Conclusion

XXXXXXXXXXXscenario
criterion

a
to

m
ic

li
n

ea
r

b
ou

n
d

ed

in
it

ia
ti

ve

o
b

se
rv

a
b

le

Linear output splitting, Section 4.2.2 A L B IP O

Calculator, Section 4.2.3 A NL UB IP O

RPC, Section 4.2.4 A L B ? O

Component abstraction, Section 4.2.5 NA NL B IP ?

User interface, Section 4.2.6 A NL UB ? O

Database, Section 4.2.7 A NL UB IP O

Table 4.1: Classification of action refinement scenarios

If an output action is possible in the start state of the refinement transition
system, we interpret the abstract action as an output action, otherwise we
interpret it as an input action. In this manner the refinement is initiative
preserving.

4.7 Conclusion

In this chapter we introduced action refinement in conformance testing. We
started with a gentle introduction into action refinement in model-based
testing by discussing several scenarios that we collected during our research.
We continued with a discussion of the action refinement ingredients that
play a role in our research. Using this as our inspiration we investigated
what results from the action refinement research found in the literature we
could re-use. We concluded that the existing research on action refinement
is a good starting point, but that action refinement for model-based testing
requires more. Especially the fact that the ioco theory identifies inputs
and outputs and that test-cases differ fundamentally from regular transition
systems are issues that need to be taken care of. We combined the phe-
nomena described in the scenarios with the action refinement results in an
action refinement classification. We used this classification to describe the
constraints that we put on our action refinement approach that we discuss
in the next chapter: atomic action refinement.

Looking back, we are a bit surprised about the nature of the existing
action refinement research. It seems like most of the work done in this
area is related to what we called the quest for the coarsest congruence.
When one looks in other directions there is less work done. It seems to us
that action refinement is a technique that can be of good use in practice.
We can imagine that action-refinement-like behavior can help programmers.

93

Chapter 4. Action Refinement and Model-Based Testing

Take for example refactoring support in an IDE (Integrated Development
Environment) as example. However there is little or no research in this
direction.

Considering the amount of research done in this area, it was surprisingly
hard to find action refinement scenarios. It seems like we are (one of) the
first to look at action refinement from a practical perspective. Therefore we
expect our action refinement scenarios to be a contribution to the field.

When we ran into the problem of refinement with a label-set that distin-
guished inputs and outputs we wondered if there would be more issues that
had to taken care of. It would have been very helpful if there were some
kind of action refinement classification that showed the (im)possibilities of
the action refinement operation itself. Because we could not find such a
classification, we defined one ourselves.

All in all, we find it a pity that the action refinement research field has
been deserted again after the quest for the coarsest congruence was finished.
We think the computer science community would profit from research and
proper tooling to support top-down design.

94

Chapter 5

Using atomic refinement to
obtain refined test-cases

In this chapter we present a theory to atomically refine test-cases and tran-
sition systems. We show that deriving a refined test suite by first refining
the model and then generating the test suite, or by refining the test suite
immediately, are equivalent. This work is based on [vdBRT07]. Our earlier
work on action refinement (see [vdBRT05]) is superseded by this work, since
the case that we studied in [vdBRT05], input-input refinement, is a special
case of the atomic action refinement theory that we discuss in this chapter.

5.1 Introduction

T
he previous chapter was the gentle introduction to action refinement
in model-based testing. In this chapter we provide the definitions and

theorems that we use for atomic action refinement. The chapter is struc-
tured in the following way. We start with transition system refinement in
Section 5.2, followed by trace refinement in Section 5.3. In Section 5.4 we
present iocor , an implementation relation between the abstract specifica-
tion and the implementation that takes refinement into account, followed
by test-case refinement in Section 5.5. We revisit our constraints in Sec-
tion 5.6 and we conclude with Section 5.7 and directions for further research
in Section 5.8. Although we do not always state so explicitly, we assume
throughout this chapter, that all used refinement functions satisfy the con-
straints of Section 4.6.

5.2 Transition system refinement

We refine transition systems using Definition 5.2.1. (start,X) is a special
state to mark the start state of the refined system. X is a special state and
is assumed not to occur in any of the other state sets. Final denotes the set

95

Chapter 5. Using atomic refinement to obtain refined test-cases

µ

(q1, q
′
1)

(q2, q
′
2)

Transition in
refined specification

start

q′2

µ

Transition in
specification

q1

q2

µ′

r(µ′)
Transition in

Figure 5.1: Example of transitions in T1

of all final states of all refinement transition systems: Final = {finalr(λ) | λ ∈
Lτ} ∪ {X}.

Definition 5.2.1 Let s = 〈Q, I, U, T, start〉, r : Lτ → FLTS. We assume
that the states of the refinement transition systems are all new: ∀µ1, µ2 ∈
Lτ : µ1 6= µ2 ⇒ (Q ∩ (Qr(µ1) ∪ Qr(µ2))) = ∅∧Qr(µ1) ∩ Qr(µ2) = ∅. The
refined system s[r] is defined as follows. s[r] = 〈Qr , Ir , Ur , Tr , startr 〉:

Qr = (Q×
⋃
µ∈Lτ Qr(µ)) ∪ {(start,X)}

Ir =
⋃
µ∈L Ir(µ)

Ur =
⋃
µ∈L Ur(µ)

T1 = {((q1, q
′
1), µ, (q2, q

′
2)) | q′1 ∈ Final∧∃µ′ ∈ Lτ : (q1, µ

′, q2) ∈ T
∧ (startr(µ′), µ, q

′
2) ∈ Tr(µ′)}

T2 = {((q1, q
′
1), µ, (q1, q

′
2)) | ∃q ∈ Q,µ′ ∈ Lτ : (q, µ′, q1) ∈ T

∧ (q′1, µ, q
′
2) ∈ Tr(µ′)}

Tr = T1 ∪ T2

startr = (start,X)

The definition reads as follows. The set of states Qr is the Cartesian
product (state tuples) of the set of abstract states with the set of states
from the refinement transition systems, plus the start state of the refined
system: (start,X). The input label set is the union of all input label sets of
the refinement transition systems and the output label set is the union of all
output label sets. The crux of the definition is in T1 and T2. T1 takes care of
all the first transitions in a refinement transition system and T2 takes care

µ

(q1, q
′
1)

(q1, q
′
2)

Transition in
refined specification

q′1

q′2

µ

q

q1

µ′

r(µ′)specification
Transition in Transition in

Figure 5.2: Example of transitions in T2

96

5.2. Transition system refinement

?i¤2

?i¤1

?i¤1

?i¤2

?refund ?refund

!o¤1!o¤2
s0

s4s1

s3s2

!o¤1!o¤2

!o¤2

r0

r1 r2

!o¤1

r3 s5

r(o¤3) r(i¤3)

?play?refund

q2 q3

q0

!o¤3 !game?i¤3
q1

t1 v1u1

t0

?play

u0 v0

?refund !game

r(refund)r(play) r(game)

Specification

Figure 5.3: LTS refinement: specification and refinement transition systems

of all the other transitions. In Figure 5.1 on the facing page and Figure 5.2
on the preceding page we show how transitions in T1 and T2, respectively,
are created. We used the same variable names as in the definition for easy
reference. Figure 5.1 on the facing page shows transition (q1, µ

′, q2) in the
abstract transition system on the left-hand side. In the middle we show
transition (start, µ, q′2) of refinement transition system r(µ′). For final state
q′1 we add transition ((q1, q

′
1), µ, (q2, q

′
2)) on the right-hand side to T1. In a

similar fashion we illustrate transition set T2 in Figure 5.2 on the preceding
page. In the following example we show how an entire transition system is
refined.

Example 5.2.2 In Figure 5.3 we show the abstract specification of the
video game (top, left-hand side) with the refinement transition systems of
the abstract actions. To keep the figures readable we will refine the system

(q0,X)

?i¤1?i¤2

?i¤1 ?i¤2

(q1, s3)(q1, s2)

(q1, s1) (q1, s4)

(q1, s5)

?refund?refund

(q1, s0)

!o¤2 !o¤1

Figure 5.4: LTS refinement step 1

97

Chapter 5. Using atomic refinement to obtain refined test-cases

in two steps. First we refine the abstract action i¤3, after that we add the
rest. We show part of the result of LTS refinement in two steps, the first
step in Figure 5.4 on the previous page and the second step in Figure 5.5
on the facing page.

We start with refining the transition from the start state in the abstract

system: q0
i¤3−−→ q1. This results in the first transitions in the refined system

from its start state (q0,X). As X ∈ Final, we can add two transitions

from r(i¤3), according to T1: (q0,X) i¤2−−→ (q1, s2) and (q0,X) i¤1−−→ (q1, s3).
We continue with transitions from (q1, s2). As s2 /∈ Final, T1 does not

apply. According to T2 we can add two transitions: (q1, s2) refund−−−−→ (q1, s1)

(because (s2, refund, s1) ∈ Tr(i¤3)) and (q1, s2) i¤1−−→ (q1, s5). When we add
all the transitions for r(i¤3) we obtain a transition system as is shown in

Figure 5.4 on the previous page. Note that transition (q1, s1) o¤2−−−→ (q1, s0)
does not go back to the start state (q0,X), although it goes back to the
start state s0 in the refinement transition system r(i¤3). This technique
is known as root unwinding. Suppose that in q0 we could also do action
play besides i¤3 and suppose that we would cycle back to (q0,X). Then the
refined actions of play are enabled again, whereas we had already chosen for
the refined actions of i¤3. When we also add all the other transitions we
get the system as depicted in Figure 5.5 on the facing page. 2

Note that the refined video game system in this form looks quite different
than the one we showed in the previous chapter in Figure 4.2 on page 67.
This is primarily the result of the way we refine transition systems. It seems
like the resulting transition system can be made smaller. In our video game
example above, the states (q1, s0), (q0,X), (q0, v1) and (q0, r3) could be taken
together.

Note that LTS refinement also creates some unreachable states and tran-
sitions that we did not depict in our figures. This is because we take the
Cartesian product of the state sets. This creates too many states; an exam-
ple of such a state is (q0, t1) in the previous example. T1 and T2 may add
transitions for these states. They do not form a problem because they are
not reachable and therefore they can be deleted.

5.3 Trace refinement

In order to relate abstract traces to traces of a refined system, we need
some form of trace refinement. The operationalization of trace refinement
uses two special sets of suspension traces of refinement transition systems,
so called XStraces (Special Straces) and TXStraces (Terminating Special
Straces).

98

5.3. Trace refinement

(q0,X)

?i¤1?i¤2

?i¤1 ?i¤2
(q1, s5)

!o¤2 !o¤1
(q1, s0)

?refund ?refund

?i¤1?i¤2

(q0, v1)

?play

(q3, t1)
!game

?refund

(q1, s4)(q1, s1)

(q0, r1) (q0, r2)

?i¤2 ?i¤1

(q2, u1)

(q0, r3)

!o¤1!o¤2

!o¤2 !o¤1

?i¤1?i¤2

(q1, s2) (q1, s3)

Figure 5.5: LTS refinement step 2

Definition 5.3.1 [Terminating Special Straces] Let s ∈ FLTS(I, U)

TXStraces(s) = {σ ∈ L∗δ\(δ·L∗δ ∪ L∗δ ·δ) | start
σ

=⇒ final}

Definition 5.3.2 [Special Straces] Let s ∈ FLTS(I, U)

XStraces(s) = {σ ∈ L∗δ\((δ·L∗δ) ∪ {ε}) | ∃q ∈ Q\{final} : start
σ

=⇒ q}

Special Straces are non-empty suspension traces of the refinement tran-
sition system that do not start with δ and do not end in the final state.
Terminating Special Straces are suspension traces of the refinement tran-
sition system, that do not start, nor end with δ and that end in the final
state.

We identify two kinds of trace refinements: complete and incomplete
refinements. Complete refinements end in a final state of a refinement tran-
sition system versus incomplete refinements ending in a non-final state (it
can be the case that a refined trace is in both sets).

The refinement function is not defined for δ and hence there is no re-
finement transition system for δ. In order to keep our definitions com-
pact, we want to treat δ as all other actions. Therefore we explicitly define
TXStraces(r(δ)) = {δ} and XStraces(r(δ)) = ∅.

99

Chapter 5. Using atomic refinement to obtain refined test-cases

Definition 5.3.3 [Complete atomic trace refinement]
Let σ = λ1 · · ·λn, n ≥ 0, ∀1 ≤ i ≤ n : λi ∈ Lδ, r : Lτ → FLTS.

σ[r]rc =

{
{ε} if n = 0
{σ1 · · ·σn | ∀1 ≤ i ≤ n : σi ∈ TXStraces(r(λi))} if n > 0

We see that complete refinement of a trace means concatenation of all pos-
sible TXStraces of the individual actions of the trace.

Definition 5.3.4 [Incomplete atomic trace refinement]
Let σ = λ1 · · ·λn, n ≥ 0, ∀1 ≤ i ≤ n : λi ∈ Lδ, r : Lτ → FLTS.

σ[r]inc =


∅ if n = 0
{σ1 · · ·σn | ∀1 ≤ i < n : σi ∈ TXStraces(r(λi)),

σn ∈ XStraces(r(λn))} if n > 0

Incomplete refinement of a trace is similar to complete refinement, except
that the final trace is in XStraces instead of TXStraces. The general defini-
tion of atomic trace refinement takes the union of complete and incomplete
refinements.

Definition 5.3.5 [Atomic trace refinement] Let σ ∈ L∗δ , r : Lτ → FLTS.

σ[r] = σ[r]rc ∪ σ[r]inc

We extend the refinement definitions for sets of traces: Σ[r]rc =
⋃
σ∈Σ σ[r]rc ,

Σ[r]inc =
⋃
σ∈Σ σ[r]inc and Σ[r] =

⋃
σ∈Σ σ[r] for Σ ⊆ L∗δ ,

Example 5.3.6 To illustrate trace refinement we use our video game sys-
tem with its refinements in Figure 5.3 on page 97. Suppose that we want to
refine the (abstract) trace i¤3·refund·o¤3. We start with the complete re-
finement of the trace. Definition 5.3.3 shows that complete trace refinement
is a concatenation of TXStraces. For i¤3 we take the set TXStraces(r(i¤3)).
To keep this example concise we only show two elements of the set of
TXStraces(r(i¤3)): i¤2·i¤1 and i¤1·refund·o¤1·i¤2·i¤1. The refinement
transition system for refund is straightforward with TXStraces(r(refund)) =
{refund}. TXStraces(r(o¤3)) = {o¤1·o¤2, o¤2·o¤1}. Combined, we can
see that i¤2·i¤1·refund·o¤1·o¤2 and i¤1·refund·o¤1·i¤2·i¤1·refund·o¤2·o¤1
are examples of completely refined traces. Incompletely refined traces are
constructed analogously, where for o¤3 we take the set XStraces(r(o¤3)) =
{o¤1, o¤2}. 2

Example 5.3.6 shows why we forbid TXStraces to start and end with
δ: a refinement transition system does not provide enough information to
decide if quiescence is appropriate at this place. For example if we allow
TXStraces(r(refund)) to end with δ we get an incorrect refinement, as this re-
sults in the erroneous trace i¤2·i¤1·refund·δ·o¤1·o¤2 ∈ (i¤3·refund·o¤3)[r]
(δ cannot be followed by an output action such as o¤1 in this case).

100

5.3. Trace refinement

Trace contraction. We call the inverse of refinement contraction. Similar
to trace refinement we define complete, incomplete and general trace con-
traction. We use the notation Lr to refer to the union of label sets of the
refinement transition systems (for a certain refinement function). Formally,
for a refinement function r : Lτ → FLTS, Lr =

⋃
µ∈L Lr(µ), where Lr(µ) is

the label set of refinement transition system r(µ). We sometimes combine
this notation with the τ and δ subscript notation, like in Lrδ.

Definition 5.3.7 [Complete trace contraction]
Let σ ∈ L∗rδ, r : Lτ → FLTS

σ〈r〉rc =


{ε} if σ = ε
{λ1 · · ·λn ∈ L∗δ | ∃n > 0, σ1, . . . , σn ∈ L∗rδ :
σ = σ1 · · ·σn ∧∀1 ≤ i ≤ n : σi ∈ TXStraces(r(λi))} if σ 6= ε

Definition 5.3.8 [Incomplete trace contraction]
Let σ ∈ L∗rδ, r : Lτ → FLTS.

σ〈r〉inc =


∅ if σ = ε
{λ1 · · ·λn ∈ L∗δ |∃n > 0, σ1, . . . , σn ∈ L∗rδ :σ = σ1 · · ·σn

∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧σn ∈ XStraces(r(λn))} if σ 6= ε

Definition 5.3.9 [Trace contraction] Let σ ∈ L∗rδ
σ〈r〉 = σ〈r〉rc ∪ σ〈r〉inc

We extend the contraction definitions for sets of traces in the following way:
Σ〈r〉rc =

⋃
σ∈Σ σ〈r〉rc , Σ〈r〉inc =

⋃
σ∈Σ σ〈r〉inc and Σ〈r〉 =

⋃
σ∈Σ σ〈r〉 for

Σ ⊆ L∗rδ.

Example 5.3.10 Trace contraction works similarly to trace refinement. We
take the refined trace i¤1·i¤2·refund·o¤2·o¤1 from Example 5.3.6. We see
that i¤1·i¤2 is in TXStraces(r(i¤3)), that refund is in TXStraces(r(refund))
and that o¤2·o¤1 is in TXStraces(r(o¤3)). In our case this is relatively easy
because there is no overlap in label sets: (i¤1·i¤2·refund·o¤2·o¤1)〈r〉rc =
{i¤3·refund·o¤3}. The incomplete contraction results in the empty set. 2

Notice that due to our liberal constraints, the sets of complete and incom-
plete refinements may overlap (the same holds for the sets of contractions).
This does not lead to problems. If a trace is only completely refined, we
can relate it to the abstract system via complete contraction. If a trace is
only incompletely refined, we can relate it to the abstract system by incom-
plete contraction. And if a trace is in the sets of complete and incomplete
refinements, then we relate it to the abstract system by applying both com-
plete and incomplete contraction. This may of course mean that there is
more than one abstract trace. There is a pleasant relation between trace
refinement and trace contraction, which states that trace contraction is the
inverse of trace refinement and vice versa.

101

Chapter 5. Using atomic refinement to obtain refined test-cases

Proposition 5.3.11 Let σ ∈ L∗δ , σ′ ∈ L∗rδ, r : Lτ → FLTS

σ′ ∈ σ[r]⇔ σ ∈ σ′〈r〉

2

A nice relation between trace refinement and LTS refinement is that the
refinement of suspension traces of the abstract system results in suspension
traces of the refined system.

Theorem 5.3.12

Straces(s)[r] = Straces(s[r])

2

The reason this theorem holds is a combination of definitions of trace
refinement and LTS refinement, together with the constraints on the refine-
ment function. The theorem would fail to hold if one of the constraints is
not met.

5.4 ioco with refinement

In this section we introduce a new variant of the ioco implementation re-
lation: iocor . It expresses correctness of the concrete implementation with
respect to the abstract specification and the refinement function. This rela-
tion is important, for ioco after refinement also gives a notion of correctness
between the abstract system and the concrete implementation. We expect
both notions to be pleasantly related and indeed we show that iocor and
ioco are equivalent in the sense that they are equally powerful in discrimi-
nating implementations. This is a nice result, because it provides a sanity
check on the action refinement definitions. On the other hand the result is
not as nice as we hoped for, because the definition of iocor and our action
refinement definitions are closely related. The main reason for this is the
use of trace refinement and contraction in the definition of iocor .

To give some intuition behind iocor , it looks at the traces in terms of
completely refined and incompletely refined traces. For completely refined
traces it looks at the output behavior of the abstract system and of the
refinement transition systems. For incompletely refined traces, it looks at
the output behavior inside the refinement transition systems (incompletely
refined traces end inside a refinement transition system).

The following defines the set of output actions that are allowed after a
completely refined trace. Completely refined traces (at least) end in the final
state of a refinement transition system. We use the abstract specification to
find out which refinement transition systems to take into account.

102

5.4. ioco with refinement

Definition 5.4.1 Let σ ∈ L∗rδ, s ∈ LTS(I, U), r : Lτ → FLTS. We use the
help set Σ = (σ〈r〉rc ∩ Straces(s))

outrc(s, σ, r) =
⋃
σ′∈Σ,µ∈out(s after σ′)\{δ} out(r(µ))\{δ}
∪ (
⋃
σ′∈Σ out(s after σ′) ∩ {δ})

The definition is straightforward, though rather technical, therefore we
explain it with the following example.

Example 5.4.2 First we explain the first part of the formula which con-
cerns the non-quiescent case: out(r(µ))\{δ} forall µ ∈ out(s after σ′)\{δ}}.
Suppose that we want to compute outrc(s, σ, r) for our video game exam-
ple with σ = i¤2·i¤1·play. We first compute Σ = (σ〈r〉rc ∩ Straces(s)) =
{i¤3·play}. Then we compute out(s after i¤3·play)\{δ} = {game}. Next
we compute the final step: out(r(game))\{δ} = {game}.

The second part of the formula deals with quiescence: out(s after σ′) ∩
{δ}. For our case we have out(s after i¤3·play) ∩ {δ} = {game} ∩ {δ} = ∅.
Hence outrc(i¤2·i¤1·play, s, r) = {game}. 2

The following definition computes the outset for incompletely refined
traces. A trace σ is split up in sub-traces, such that all sub-traces –except the
last one– are in the set TXStraces of some abstract action. The last sub-trace
should be in the set XStraces of some abstract action. This requirement
expresses that the trace ends inside a refinement. The goal is to end up
with the set of outputs that are allowed within refinements.

Definition 5.4.3 Let σ ∈ L∗rδ\{ε}, s ∈ LTS(I, U), r : Lτ → FLTS.

out inc(s, σ, r) = {x ∈ out((r(λn) after σn)\{final}) |
∃n > 0, σ1, . . . , σn−1 ∈ L∗rδ, λ1, . . . , λn−1 ∈ Lδ :

σ = σ1 · · ·σn ∧λ1 · · ·λn ∈ Straces(s)
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))

∧σn ∈ XStraces(r(λn))}

Like the complete case, this is a straightforward though rather technical
definition. We explain it in the next example.

Example 5.4.4 Suppose that we want to compute out inc(s, σ, r) for our
video game example with σ = i¤2·refund. In Definition 5.4.3 we use the
definition of incomplete contraction to refer to the last label of the incom-
plete contraction of σ. In our case there is only one solution: i¤2·refund ∈
XStraces(r(i¤3)); in terms of our definition, this means that σn = i¤2·refund
and λn = i¤3. To finish our example we compute: out(r(λn) after σn) =
{o¤2}, therefore out inc(s, σ, r) = {o¤2}. 2

The definition of iocor takes the union of both sets. This means that we
have the set of all possible refined output actions after a refined trace. Our
goal is that this is exactly the same set as the refined specification prescribes.

103

Chapter 5. Using atomic refinement to obtain refined test-cases

Definition 5.4.5 [iocor]
Let s ∈ LTS(I, U), i ∈ IOTS(Ir , Ur), r : Lτ → FLTS

i iocor s⇔∀σ ∈ Straces(s)[r] :out(i after σ) ⊆ outrc(s, σ, r)∪out inc(s, σ, r)

One may wonder how the iocor definition works out for traces that are
both complete and incomplete refinements. In this case we compute both
the outrc and out inc sets. For being in both sets means that the particular
trace may end within a refinement and at the end of a refinement.

Proposition 5.4.6 Let s ∈ LTS(I, U), σ ∈ L∗rδ, r : Lτ → FLTS

out(s[r] after σ) = outrc(s, σ, r) ∪ out inc(s, σ, r)

2

We obtain Theorem 5.4.7 when we combine Theorem 5.3.12 and Propo-
sition 5.4.6. Theorem 5.3.12 enables us to move back and forth between
the abstract and refined traces and Proposition 5.4.6 gives us the required
results on the outset of the refined system.

Theorem 5.4.7 Let i ∈ IOTS(I, U), s ∈ LTS(I, U), r : Lτ → FLTS.

i iocor s⇔ i ioco s[r]

2

5.5 Test-case refinement

With test-case refinement, we want to obtain test-cases with the required
level of detail in order to test the iut. There are two ways to obtain a re-
fined test-suite. One way is to refine the abstract specification and generate
a test-suite from the refined specification. Another way is to directly refine
the abstract test-suite into a refined test-suite. Our results on LTS refine-
ment enable us to use the former approach. When we use Tretmans’ test
generation algorithm, we obtain a test-suite that is complete with respect to
ioco and the refined specification. In this section we examine how to obtain
a refined test-suite by directly refining an abstract test-suite.

Our test-case refinement approach works in a similar way as trace refine-
ment. In short, we make for every transition in an abstract test-case (that
does not lead to pass or fail, i.e., a final state) a mini-test-case. This mini-
test-case tests the behavior defined by a refinement transition system. Next
we combine all mini-tests together to form a test-case and we add missing
observations where necessary.

104

5.5. Test-case refinement

5.5.1 Mini-test generation

A mini-test is a special test-case for a refinement transition system. It does
not have fail states and only looks at the defined outputs of the refinement
transition system in an observation step. It has a special state final that
indicates the final state of the mini-test.

Definition 5.5.1 [mini-test] A mini-test 〈Q, I, U, T, start, final,Pass〉 is an
acyclic FLTS 〈Q, I, U, T, start, final〉 with the addition of Pass ⊆ Q: a set of
pass states.

Definition 5.5.2 [mini-test generation]
Let s = 〈Qs, Is, Us, Ts, starts, finals〉 ∈ FLTS(Is, Us) be a refinement transi-
tion system. S is a set of states that we initialize with {starts, ∗}, where ∗
as a special symbol to forbid the observation of δ as a first observation. A
mini-test mt is obtained from S by a finite number of recursive applications
of one of the following non-deterministic choices. We denote the entire set
of generated mini-tests for an FLTS s as MT (s).

1. mt := pass.

2. mt := X if finals ∈ S. We apply this rule only once for the entire
mini-test generation. As a result there is only one state marked with
X (final state).

3. mt := a; t′ where a ∈ I, t′ is obtained by applying the algorithm for
S′ = S\{∗} after a. This rule is only applicable if S\{∗} after a 6= ∅.

4. mt := Σ{x; tx}, where x ∈ out(S\{final})}, tx is obtained by applying
the algorithm for S′ = (S\{final}) after x. This rule is only applicable
when ∗ /∈ S and out(S\{final}) 6= ∅.

5. mt := Σ{y; ty}, where y ∈ out(S\{∗, final})\{δ}, ty is obtained by
applying the algorithm for S′ = S\{∗} after y. This rule is only
applicable when ∗ ∈ S and out(S\{∗, final})\{δ} 6= ∅.

Rule 1 and 2 stop the recursion in the mini-test generation algorithm.
pass is the regular way and X has a special meaning as it results in the
final state of the mini-test. Via this state we connect the mini-test with
the start state of another mini-test (there can be only one such state, as
we will explain in Section 5.5.2). Via rule 3 we perform a stimulus a in the
case that S\{∗} after a is not the empty set. We update the set S with
S′ = S\{∗} after a. We perform observations with rule 4 and 5. Rule 5 is
for the first observation (when ∗ ∈ S) and rule 4 for all other observations.
When we are in the final state we do not perform an observation, hence the
exclusion of final from S (there are no outgoing transitions in final and δ is

105

Chapter 5. Using atomic refinement to obtain refined test-cases

!i¤1

?δ

!i¤2

mini test 2

!i¤1

!i¤2

mini test 3

X

!i¤1

!refund

?o¤1

!i¤2

!i¤1

mini test 1

X

t0

t2

t3

t4

t1

pass

Figure 5.6: Example mini-test-case generation

not a valid observation in final). The constraints on the out sets in rules 4
and 5 prevent the unwanted result mt = Σ∅ = stop

Just as δ observations are not allowed in final, δ observations are also
not allowed in the start state of the refinement transition system. Or more
precisely, they are not allowed as a first observation; if we return to the start
state, for example via a loop, δ-observations are allowed. In order to prevent
δ observations as the first observation of a mini-test, we use the symbol ∗.
When ∗ ∈ S, this means that it is the first observation of the mini-test,
therefore δ is not a valid observation; hence the rule for y; ty. When the
outsets are empty it is possible to obtain mt := Σ∅ (= stop), this is an
unwanted situation, because we only want the mini-test to stop with rules
1 and 2. Therefore we check first if the outsets are empty.

Example 5.5.3 In Figure 5.6 we create some mini-tests for r(i¤3) (Fig-
ure 5.3 on page 97 bottom right), to illustrate the mini-test generation al-
gorithm. We show three mini-tests for this refinement transition system.
We explain mini-test 1 in detail. We start with the state-set S = {s0, ∗}.
Suppose we non-deterministically choose the stimulus i¤1 (step 3), which
is possible, because S after i¤1 = {s3}(6= ∅). We obtain mt = i¤1; t0.
We continue with the “unrolling” of t0 with state-set S′ = {s3}. Sup-
pose we again choose a stimulus (step 3), in this case refund. We obtain
mt = i¤1; refund; t1. We continue with t1 with state-set S′ = {s2} after
refund = {s4}. Suppose we now choose an observation (step 4). The only
defined output is o¤1, resulting in mt = i¤1; refund; o¤1; t2 with the new
state-set S′ = {s4} after o¤1 = {s0}. This step is allowed because the
outset is not empty. To obtain mini-test 1, we add two more stimuli: i¤1
followed by i¤2. In the same way we can generate the other mini-tests.

106

5.5. Test-case refinement

One final word on the observation of outputs (we use the same example).
When we are in the start state, we are not allowed to observe quiescence.
This is the reason why no observation is possible as the first test-action.
When S = {s0, ∗}, we obtain out(S\{∗, final} after)\{δ} = ∅. This results
in mt = Σ∅, which is forbidden because we want mini-test-cases to end with
pass or X. 2

To treat δ in a similar way as the other mini-tests, we introduce the set
of mini-tests for the δ label: MT (r(δ)).

Definition 5.5.4 [δ mini-test]
MT (r(δ)) consists of one mini-test 〈Q, I, U, T, start, final,Pass〉 with: Q =
{start,X}, I = ∅, U = {δ}, T = {(start, δ,X)}, final = X,Pass = ∅.

5.5.2 Building the skeleton for refined test-cases

In this section we build skeletons for refined test-cases. We call them skele-
tons because they are not yet proper test-cases. For example, we still have
to assign verdicts to some final nodes. We use a function to help us building
the skeleton for refined test-cases: f : Q → Lδ → MT . This is a function
that takes an abstract state and an abstract label as input and delivers a
mini-test for the abstract label. For the application of f on a state q we use
the notation fq rather than f(q). To put it formally: let q ∈ Q,λ ∈ Lδ then
fq(λ) ∈ MT (r(λ)).

Definition 5.5.5 Let t = 〈Q, I, U, T, start,Pass,Fail〉 ∈ TEST(I, U) (ab-
stract test-case) and f : Q → Lδ → MT . We assume that the states of the
mini-test-cases do not have labels in Lrδ and we assume their state sets to
be disjoint. We define t[f] = 〈Qf , If , Uf , Tf , (start,X),Passf ,Unknownf 〉 as
follows:

107

Chapter 5. Using atomic refinement to obtain refined test-cases

Qf = Q1 ∪ {(q, q′) | q ∈ Q1, q
′ ∈ Ufδ}, where

Q1 = {(q, q′) | q ∈ Q, q′ ∈
⋃
λ∈Lδ,q1∈QQfq1 (λ)}

If =
⋃
µ∈L Ir(µ)

Uf =
⋃
µ∈L Ur(µ)

Tf = T1 ∪ T2 ∪ T3, where
T1 = {((q1,X), µ, (q′1, q

′
2)) | q′1 /∈ Fail,∃µ′ ∈ Lδ : (q1, µ

′, q′1) ∈ T,
(startfq′1

(µ′), µ, q
′
2) ∈ Tfq′1 (µ′)}

T2 = {((q1, q2), µ, (q1, q
′
2)) | q1 /∈ Fail, q2 6= X,

∃q ∈ Q,µ′ ∈ L : (q, µ′, q1) ∈ T, (q2, µ, q
′
2) ∈ Tfq1 (µ′)}

T3 = {((q1, q2), µ, ((q1, q2), µ)) | ((q1, q2), µ) ∈ Qf ,
∃µ′ ∈ Urδ, q ∈ Q1 : ((q1, q2), µ′, q) ∈ T1 ∪ T2,

@q′ ∈ Q1 : ((q1, q2), µ, q′) ∈ T1 ∪ T2}
Passf = {(q, q′) | q ∈ Pass, q′ = X} ∪ {(q, q′) | ∃µ ∈ Lδ,m ∈ MT (r(µ)) :

q′ ∈ Passm}
Unknownf = {(q1, q2) | q1 ∈ Q1, q2 ∈ Urδ}

The outcome of this construction is called a test skeleton. They have the
following properties:

• Transitions in T1 connect the end-state of one mini-test to the start-
state of another.

• Transitions in T2 add all the other transitions of mini-tests; other
meaning not a start or end-state.

• Transitions in T1 and T2 do not guarantee that all possible actions
in Ufδ are added to a test-case observation step (remember that a
test-case does either one input action, or observes all possible outputs
of the system under test). T3 makes sure that any missing output
observation is added.

The definition is rather technical and we will explain it in some more
detail. The creation of the test skeleton is quite similar to Definition 5.2.1
(LTS refinement). The main differences are the transitions in T3 and the
Pass and Unknown states (we use unknown to refer to states in Unknown,
analogous to pass and fail). T3 adds all undefined observations: mini-tests
only generate observations for defined output actions. Pass states are state
tuples where the first state is a pass state from the abstract test-case and
the second state is X, or where the second state is a pass state from the
mini-test. Unknown states are all the observations that we add in T3. The
Unknown states are tuples where the first element is a state tuple in Q1 and
the second element is a label (the label of the incoming transition). In this
way we can uniquely identify the Unknown states. We use this information
later on to find out if the these states can be considered to be pass or fail
states.

108

5.5. Test-case refinement

!i¤1

!refund

?o¤1

!i¤2

!i¤1

mini test

X

t0

t3

t4

t1

t2

!i¤3

start

q1

!i¤1

test skeleton

(start,X)

(q1, t1)

!i¤2

!i¤1

(q1, t2)

(q1, t3)

(q1, t4)

(q1,X)

?δ

abstract test case

((q1, t2), δ)

!refund

pass

unknown

?o¤2

((q1, t2), o¤2)

?o¤1
unknown

Figure 5.7: Skeleton building example

The reason that we use Unknown states is that a single test-case does
not have enough information to assign failures to the refined test-case. The
mini-tests and the refinement transitions systems only provide information
to determine if a trace is a suspension trace of the refined system. It does
not provide enough information to determine that a trace is not a suspension
trace. We illustrate this in the following example.

Example 5.5.6 Figure 5.7 depicts the way to come from an abstract test-
case and mini-test to a test skeleton. We take only one transition of the ab-
stract test-case into account to keep the example compact. In the Figure we
see an abstract test-case (left), a mini-test (middle, we re-use the mini-test
from Example 5.5.3) and a test skeleton (right). We assume that fq1(i¤3)
has mini-test 1 as its result (we refer to mini-test 1 as m1). We start with
the start state (start,X) and the abstract transition (start, i¤3, q1), with q1 /∈
Fail. We see that (t0, i¤1, t1) ∈ Tm1 , via T1 we add ((start,X), i¤1, (q1, t1)) to
the transition set of the test skeleton. For the state (q1, t1) we see that q1 /∈
Fail, t2 6= X, (start, i¤3, q1) ∈ T and (t1, !refund, t2) ∈ T

fq1 (i¤3)
, therefore T2

adds ((q1, t1), !refund, (q1, t2)) to the test skeleton. The ?o¤1, !i¤2 and !i¤1
transitions work in the same way (T2). This leaves us with the T3 transitions,
we illustrate this with the observation ((q1, t2), ?o¤1, (q1, t3)). T3 tells us
that for every missing output we add a transition. Suppose that the output
set is {o¤1, o¤2, δ}, this means that the o¤2 and δ observations are missing,
therefore we add: ((q1, t2), δ, ((q1, t2), δ)) and ((q1, t2), ?o¤2, ((q1, t2), o¤2)).

Note that at this point it is not possible to tell if these two unknown
states should be pass or fail states, based on the information of the mini-tests
and the refinement function. Suppose that based on the refinement tran-
sitions system r(i¤3) we conclude that the observation o¤2 is not allowed

109

Chapter 5. Using atomic refinement to obtain refined test-cases

?x ?y

x[r]

!x !x

y[r]t

?x ?x

tr

Figure 5.8: Example of a non deterministic test-skeleton

and that is should lead to fail. There is no restriction in our refinement
approach that prevents this behavior from occurring in another part of the
refined system. Just imagine an abstract action a (enabled at the same time
that i¤3 is enabled) which refinement transition system enables the trace
i¤1·refund·o¤2. The other way around, we cannot just lead the observation
of o¤2 to pass. Suppose that o¤2 is only defined in r(i¤3), that means that
the observation of o¤2 will never lead to fail and that we can never detect
this failure. 2

5.5.3 Turning test-case skeletons into proper test-cases

The skeletons of refined test-cases as defined above have two problems. First
they have unknown states and no fail states. Second they are not proper
test-cases. It can be the case that an observation has two different transitions
for the same output action, therefore it may violate Definition 2.5.1 (test-
case).

The non-determinism in skeletons arises because we allow refinement
transition systems to have overlapping label sets. We depict the problem in
Figure 5.8. We see an abstract test-case (left), refinement transition systems
for x and y (middle) and the skeleton (right). The abstract test-case has the
observations x and y. The refinement function tells us that x is refined to
itself and that y is refined to x. This results in the non-deterministic skele-
ton on the right. In principle, the non-deterministic observations are not
a big problem. A refined test-case with this behavior can still be executed
against an implementation. However, it violates the commonly used defi-
nition of test-cases and therefore we determinize the skeletons first. We do
not go into the details of determinization here, we assume the skeleton to be
deterministic. Determinization is a well-studied subject, for our means the
so called λ-closure, also known as powerset or subset construction works fine
(see for example [Sud88], page 151-153). An alternative may be the splitting
of skeletons whenever a non-deterministic observation occurs. We did not
investigate if this is a better option than other determinization techniques.

We introduced the unknown states because sometimes we do not know
what verdict to give to an observation. This arises because of the few re-
strictions we place on the action refinement function. The result is that
a refined trace can have more than one abstract trace as its original. As
a result it may be the case that we cannot base our verdict only on the

110

5.5. Test-case refinement

refinement function. By using the information in the refinement function
and the abstract test-suite we may resolve unknown states into pass and
fail states. It may be the case that there are states that we cannot resolve
and for these states we introduce the inconclusive verdict. Below we define
extended test-cases that take inconclusive verdicts into account. Analogous
to pass and fail we use inconclusive to refer to states in Inconclusive.

Definition 5.5.7 [Extended test-case] An extended test-case t = 〈Q,S,R,
T, start,Pass,Fail, Inconclusive〉 is a test-case 〈Q,S,R, T, start,Pass,Fail〉 with
the addition of Inconclusive: a set of inconclusive states such that Pass ∩
Inconclusive = Fail ∩ Inconclusive = ∅.

The final test-case refinement step is the removal of the Unknown set. We
change the unknown verdict to pass, fail or inconclusive in the following
way.

Definition 5.5.8 [Verdict assignment] Let AT be a set of abstract test-
cases. Let t ∈ AT and s = 〈Q,S,R, T, start,Pass,Unknown〉 a test skeleton
derived from t as described in Definition 5.5.11. We transform s to an
extended test-case, denoted by 〈Q, S, R, T , start, Epass, Efail, Inconclusive〉.
Epass, Efail and Inconclusive have the following definition:
Epass = Pass ∪ {q ∈ Unknown | ∃σ ∈ L∗rδ : start σ−→ q

∧∃σ′ ∈ σ〈r〉, t ∈ AT , q′ ∈ Qt\Failt : t σ′−−→ q′}
Efail = {q ∈ Unknown | ∃σ ∈ L∗rδ : start σ−→ q

∧∀σ′ ∈ σ〈r〉,∃t ∈ AT , q′ ∈ Failt : t σ′−−→ q′}
Inconclusive = Unknown\(Epass ∪ Efail)

In words, rule 1 states that if there is a contraction of σ for which there
is an abstract test-case that leads to a non-fail state, then we turn q into
a pass state. Rule 2 states if for all contractions of σ there is an abstract
test-case leading to fail (for the abstract trace) then we turn q into a fail
state. This includes the case that σ〈r〉 = ∅. In all other cases we move
q to Inconclusive. The intuition behind Epass is as follows. Suppose for a
trace that leads to an unknown state we have an abstract test-case for its
contraction that does not lead to fail. This means that we can refine that
abstract test-case into a test-case that can perform its refinements, including
the trace leading to the unknown state. In other words this is a trace that
the implementation should pass. For the Efail case on the other hand, if all
contractions of the trace leading to unknown have a test-case leading to fail,
we know that this refinement is impossible and should therefore fail. We
call the set of remaining unknowns Inconclusive.

An interesting question is if we can do better than this, i.e., are there
states in Inconclusive that can become pass or fail states. In the case of
pass it is easy to see that this is not the case (with the aid of the fail-fast

111

Chapter 5. Using atomic refinement to obtain refined test-cases

!i¤1

test skeleton

(start,X)

(q1, t1)
!refund

!i¤2

!i¤1

(q1, t2)

(q1, t3)

(q1, t4)

(q1,X)

?δ ?o¤2

fail

?o¤1

fail

Figure 5.9: Verdict assignment

property that we will introduce in the next section). If there is a test-case
for a contraction that leads to a non fail state, we know (fail-fast) that the
contraction is a suspension trace of the abstract system and as a result the
refined trace is a trace of the refined system (Theorem 5.3.12). In the case
of the fail states it is not clear if we can do better and more research is
needed. It is however clear that if none of the contractions is a suspension
trace of the abstract system, then the refined trace is also not a suspension
trace of the refined system. Note that for the second case it is important
that all contractions should have an abstract test-case leading to fail. If
there is only one abstract trace and one test-case leading to pass (rule 1),
we know that the refined trace is a suspension trace of the refined system.

In general it seems a good idea to take the Pass and Inconclusive sets
together. Inconclusive means that we do not know if the trace is a suspen-
sion trace of the refined system. Interpreting inconclusive as failure may
introduce unsound test-cases and therefore seems a bad idea. Interpreting
inconclusive as pass does not have this effect. We show in the next section
that under some circumstances we can interpret the Inconclusive as failures.
This is the reason that we identify the inconclusive as a separate verdict.
Unless stated otherwise, the inconclusive verdict is interpreted as the pass
verdict, turning the extended test-case in a normal test-case.

Example 5.5.9 In Example 5.5.6 we built a test skeleton with the traces
!i¤1·!refund·?δ and !i¤1·!refund·?o¤2 leading to unknown states. It de-
pends on the refinement function and the abstract test-suite if these traces
should lead to pass, fail or inconclusive. When we use the refinement func-
tion of Figure 5.3 on page 97 we get the contractions: (!i¤1·!refund·?δ)〈r〉 =
∅ and (!i¤1·!refund·?o¤2)〈r〉 = ∅, therefore the states become fail states.
The result is depicted in Figure 5.9. 2

112

5.5. Test-case refinement

pass

!a

?x

t a[r]

?a1

?a2

?a1

b[r] x[r]

!x !a1

?xδ

pass unknown

tr

Figure 5.10: Verdict assignment in more detail

In the following example we treat the verdict assignment definition in
more detail and show why we need the inconclusive verdict.

Example 5.5.10 Suppose we have an abstract test-set with one test-case:
a·x·pass (left-hand site in Figure 5.10). We have the refinement transition
systems a[r], b[r] and x [r] also in the figure. a is refined into input actions
a1 followed by a2, b by input action a1 and x by itself. The test-skeleton on
the right-hand site of the figure is generated from the abstract test-case. We
want to transform the unknown state into pass, fail or inconclusive. A
valid contraction of a1·x is b·x. This trace is not covered by our abstract test-
set, hence we do not know if it is an allowed suspension trace of the abstract
system. This means that the unknown state becomes and inconclusive
state after verdict assignment. If we would have had an abstract test-case
that covered the trace b·x, the state would have become a pass state. In
case we would have had an abstract test-case leading to fail after b·x the
state would have become a fail state. 2

From now on we use the term test-case refinement to refer to the end
result of the test-case refinement steps (mini-test generation, skeleton build-
ing and verdict assignment). This means that for an abstract test-case t,
t[r] denotes the set of refined extended test-cases. We extend test-case re-
finement to test-suites in a straightforward manner. Let T ⊆ TEST(S,R)
be an abstract test-suite then, T [r] =

⋃
t∈T t[r]. In order to get all possi-

ble combinations of mini-tests in the refined test-cases we use all possible
functions f .

Definition 5.5.11 Let t = 〈Q, I, U, T, start,Pass,Fail〉 ∈ TEST(I, U).

t[r] = {t[f] | f : Q→ Lδ → MT , with ∀q ∈ Q,λ ∈ Lδ : fq(λ) ∈ MT (r(λ))}

5.5.4 Completeness of test-case refinement

In this section we show under which circumstances the refinement of a
complete abstract test-suite results in a complete refined test-suite. The

113

Chapter 5. Using atomic refinement to obtain refined test-cases

completeness property consists of two parts: soundness and exhaustiveness.
First we introduce the property fail-fast.

We assume that test-cases give a fail verdict as soon as a response occurs
that violates ioco. We call this property fail-fast. The definition below
expresses that when we remove the last action of a trace (to test system s)
leading to a fail state, we should obtain a suspension trace of s. Together
with soundness this is a helpful property, because we know that a test-
case that performs the prefix of the trace leading to fail, does not lead
to a fail state. Furthermore, we know that a trace not leading to a fail
state is a suspension trace. As mentioned in the previous section, fail-
fast is important for Definition 5.5.8 (verdict assignment), especially for the
definition of Epass.

Definition 5.5.12 [Fail-fast]
Let t ∈ TEST(I, U) be a test-case to test system s and x ∈ Lδ. We call t
fail-fast for s if the following holds:

t σ−→ q ∧ q /∈ Fail⇒ σ ∈ Straces(s)

Proposition 5.5.13 Let T ⊆ TEST(I, U) be sound and fail-fast, r : Lτ →
FLTS, tr ∈ T [r], σ ∈ L∗rδ.

tr
σ−→r fail⇒ ∃σ′ ∈ Straces(s[r]), x ∈ Urδ : σ = σ′·x∧x /∈ out(s[r] after σ′)

2

With this proposition it is straightforward to prove that a sound and
fail-fast test-suite is sound again after refinement.

Theorem 5.5.14 [Soundness of the refined test-suite]
Let t ∈ TEST(I, U), s ∈ LTS(I, U) and let t be fail-fast.
(t is sound w.r.t. ioco and s)⇒ (t[r] is sound w.r.t. ioco and s[r]) 2

To prove that an exhaustive abstract test-suite is again exhaustive after
refinement, we need an extra constraint: conformance trace completeness. A
test-suite is conformance trace complete with respect to a transition system
s if for every suspension trace of s there is a test-case to perform this trace.
We introduce this property, because a complete test-suite is not necessar-
ily conformance trace complete. As discussed in [vdBRT05], a complete
test-suite can be optimized by removing test-cases that are superfluous (for
example because they always lead to pass). Thus it might be the case that
we have a test-suite that is not conformance trace complete with respect
to its specification. This means that we may have an abstract trace σ for
which we do not have a test-case. Suppose that there is an error in the
implementation for some of the traces in σ[r]. This means that we cannot

114

5.5. Test-case refinement

construct a refined test-case to perform these refined traces, so we cannot
determine the incorrectness. For the exhaustiveness results of this section to
hold, we need test-cases for these traces in the test-suite (in order to refine
them).

Definition 5.5.15 [Conformance trace completeness]
Let s ∈ LTS(I, U), T ⊆ TEST(I, U). T is conformance trace complete
with respect to s if:

∀σ ∈ Straces(s) : ∃t ∈ T : t σ−→

When the abstract test-suite is conformance trace complete, the refined
test-suite will give the verdict inconclusive or fail for non-conforming ob-
servations.

Proposition 5.5.16 Let s ∈ LTS(I, U), σ ∈ Straces(s[r]) and let T be a
conformance trace complete, exhaustive and fail-fast test-suite for s with
respect to ioco.

x /∈ out(s[r] after σ)⇒ ∃tr ∈ T [r], q ∈ (Failtr ∪ Inconclusivetr) : tr
σ·x−−→r q

2

When an abstract test-suite T is fail-fast and conformance trace com-
plete, we have a special situation. In this case we can interpret the inconclu-
sive states as fail states. The rationale behind this is that, because there is
an (abstract) test-case for every suspension trace, we can also construct test-
cases for the all the refined traces. When we have a refined test-case leading
to inconclusive this means that there simply was no abstract test-case to
begin with and therefore the trace is not a suspension trace.

Proposition 5.5.17 Let T be complete, fail-fast and conformance trace
complete with respect to s and ioco and let tr ∈ T [r].

tr
σ·x−−→ inconclusive⇒ x /∈ out(s[r] after σ)

2

For the following theorem and corollary we take the union of Inconclusive
and Fail as the set of fail-states. The result is a test-case in terms of Defini-
tion 2.5.1 (test-case).

Theorem 5.5.18 [Exhaustiveness of the refined test-suite]
Let s ∈ LTS(I, U), T ⊆ TEST(I, U) be a conformance trace complete and
fail-fast test-suite.

T is exhaustive w.r.t. ioco and s
⇒ T [r] is exhaustive w.r.t. ioco and s[r]

2

115

Chapter 5. Using atomic refinement to obtain refined test-cases

?a

?b

?a

!x

?a

r(a)

!x

s r(b) s[r]

Figure 5.11: Example for delta preservation

Proposition 5.5.16 and the fact that we can treat inconclusive states
as fail are the main ingredients in the proof of this theorem.

Tretmans’ test-case generation algorithm generates a complete, confor-
mance trace complete and fail-fast test-suite. Hence refinement of such a
test-suite gives us a complete test-suite with respect to iocor and the ab-
stract specification.

Corollary 5.5.19 The refinement of a complete test-suite generated with
Tretmans’ algorithm for test-case generation, is complete with respect to
iocor and the abstract specification.

5.6 Constraints revisited

Before we conclude this chapter, we want to revisit the constraints on our
action refinement function. We now have all the information to explain what
can go wrong if one of the constraints is violated.

The first three constraints in Section 4.6 – refinements of input actions
are only allowed to start with an input action, refinements of output actions
are only allowed to start with an output action and τ is refined to τ – are
to make sure that our refinements are δ-preserving and δ-reflecting. With
δ-preserving we mean that we preserve (i.e., do not remove) quiescence that
originates from the abstract system. With δ-reflecting we mean that we do
not add quiescence in the refined system/test-case at places where there is
none in the abstract case. Without theses constraints we run into prob-
lems with trace and test-case refinement. We illustrate this in the following
example.

Example 5.6.1 In Figure 5.11 we see on the left-hand side an abstract
specification s. Its functionality is simple: a followed by b. This means that
the trace a·δ·b is a suspension trace of s. We refine a to itself and we violate
constraint 2 by refining b to the output action x. In the refined system (s[r]
on the right-hand side) δ is not allowed anymore after a: δ is not preserved
after refinement. How can we refine the trace a·δ·b with these refinements?
The only way to know if δ is allowed in the refined system, based on only

116

5.6. Constraints revisited

the abstract trace and the refinement systems seems impossible. In order to
identify where quiescence is allowed we would need information about the
abstract system.

The other way around we can introduce quiescence in the refined system
at places where there was none in the abstract system. In Figure 5.12 we
show a similar refinement as before, but now we refine the output action x
to the input action b. We see that a·x is a trace of the abstract system (δ
is not allowed after a). In the refined system on the right-hand side, we see
that a·δ·b is a trace of the refined system; δ is now allowed after a. This
means that based on an abstract trace and the refinement relation alone,
we cannot compute all refined traces of the abstract trace anymore. Like in
the delta preservation case, we need the abstract system. 2

As the example shows, we need constraints 1, 2 and 3 to handle δ-
actions in trace refinement. We could of course ignore δ-actions, altogether.
This enables us to refine traces, albeit that the refined traces will lack δ-
actions. The result is that Theorem 5.3.12 would not hold anymore, because
refinement of the suspension traces of the abstract system will be at most
a proper subset of the suspension traces of the refined system. Similarly we
will not be able to prove completeness of refined test-cases Theorem 5.5.14
and Theorem 5.5.18.

Restrictions 3 and 4 – τ is refined to τ and no forgetful refinement – are to
prevent curious refinements from happening. One of them is δ-reflection as
we discussed above. More general, when we allow invisible actions to become
visible in the refinement or, vice versa, visible actions to become invisible, it
is possible to create bizarre refinements. For example a refinement in which
we make all behavior invisible. In terms of our classification in Section 4.5
these constraints are related to observability. When an action is refined to
invisible behavior, or vice versa, we may not be able anymore to relate the
abstract and the refined behavior. Removing restrictions 3 and 4 is not so
much a problem for transition system refinement, it is however for trace and
test-case refinement. As with constraints 1, 2 and 3, removing restrictions 3
and 4 have the result that Theorem 5.3.12 does not hold anymore for traces
and that Theorem 5.5.14 (soundness) and Theorem 5.5.18 (exhaustiveness)

?a

!x

?a

?b

?a

r(a)

?b

s r(x) s[r]

Figure 5.12: Example for delta reflection

117

Chapter 5. Using atomic refinement to obtain refined test-cases

q0,X

q1, r1

q2, s1

q1, r0

q0

q1

q2

r0 s0

s1r1

?a1?b ?b?a

s[r]r(b)r(a)s

?a1

?b
?b

?a1

?b

Figure 5.13: Observability constraint example

do not hold anymore for test-cases.

Note that forgetful refinement is actually implied by the constraint 1,
2 and 3, together with the constraint that the start-state of a refinement
should be different from the end-state. It seems that in the future we can
drop it altogether.

Restriction 5 – no outgoing transitions in the final state – makes it pos-
sible to determine where the refinement behavior ends in the refined system.
This requirement is related to part 1 of the congruence requirement of Sec-
tion 4.4. We need a clear termination point of refined behavior. We choose
to do this via the final state. However, the final state is not a termination
point of the refined behavior when outgoing transitions are possible. With-
out outgoing transitions we are sure that the final state signals the end of
the behavior of the refinement transition system. We use this information
in the proof of Theorem 5.3.12. We illustrate the constraint in the following
example.

Example 5.6.2 We reuse the figure from the observability constraint (see
Figure 5.13). We see an abstract system on the left-hand side that can per-

q0,X

q1, r1

q1, r2

q1, r0

q2, s1

s0

s1

?b

r(b)

q0

q1

q2

?a

s

?b

r0

r2

r1

s[r]

?a1

?b

?a1

?b

τ

?a1?b

r(a)

τ

Figure 5.14: Observability constraint example, part two

118

5.6. Constraints revisited

form a followed by b. We refine b to itself and a to a1, followed by zero
or more times (b followed by a1), thus violating constraint 5. s[r] on the
right-hand side is the resulting refined system. The problem at hand is that
in the refined system we need to be able to tell when we reached the end
of refinement behavior. We need this in order to relate the behavior in the
refined system to behavior in the abstract system. In terms of Figure 5.13
on the preceding page this means that we want to know which of the exe-
cutions (q0,X)a1(q1, r1)b(q1, r0) and (q0,X)a1(q1, r1)b(q2, s1) are related to
execution q0aq1bq2 of the abstract system s. In our proofs we use the second
element of a state pair for this. If the second element of a state pair is the
final state of a refinement transition system, we interpret this as the end
of the refined behavior of the refinement transition system (to which the
end state belongs). In our figure this means that (q1, r1) signals the end
of the refined behavior of r(a). When end states are allowed to have out-
going transitions this interpretation does not hold, because the transition
(q1, r1) b−→ (q1, r0) is part of r(a).

In Figure 5.14 on the facing page we model the same behavior without
outgoing transitions in the final state of r(a). As one can see in s[r], we
can clearly distinguish refinements from a that have reached the final state,
from refinements that are not yet finished: (q1, r2) signals the end of refined
behavior from r(a). 2

The observant reader may have noticed that in the future we can remove
constraint 5. The important part is that we know when refined behavior has
ended successfully (remember the congruence requirement from Section 4.4).
We know this already from the context of the refinement transition system,
because of the final state of the refinement transition system. The next thing
to know is if an outgoing transition, of a state-pair with a final state as its
second state is related to abstract or refined behavior. It seems that we get
this information from Definition 5.2.1 (LTS refinement). Look again at s[r]
in Figure 5.13 on the preceding page. We can distinguish between behavior
originating within a refinement transition system (before the final state)
and behavior originating from another refinement system (after the final
state) by looking at the first state of the state pairs in the refined system.

In the figure (q1, r1) b−→ (q1, r0) can be distinguished from (q1, r1) b−→ (q2, s1)
because the first state in the state pair changes from q1 to q2, indicating
that the refined behavior of r(a) has finished.

Note that contrary to the previous constraints, constraint 5 is impor-
tant for the refinement of transition systems. For trace refinement it is not
problematic if a final state has outgoing transitions. On a suspension trace
level there is no difference between the refined systems in Figure 5.13 on the
facing page and Figure 5.14 on the preceding page. The trace a1 and a1·b
are refined traces of a and a1·b is a refined trace as well of a·b. Vice versa,
we can contract a1·b to a and a·b.

119

Chapter 5. Using atomic refinement to obtain refined test-cases

5.7 Conclusion

In this chapter we addressed action refinement in model-based testing: the
problem that a model, or a test-case, does not have enough information to
properly test the iut, because some actions are unknown to the iut, or
because the model, or test-case, is incorrect because of wrong abstractions.
We presented action refinement as a way to add information to models and
test-cases by replacing abstract actions with more complex behavior. We
showed how to use action refinement to refine traces, transition systems and
test-cases for a special case of action refinement: atomic action refinement.
We also introduced a new implementation relation iocor that relates an
abstract model to a concrete implementation.

It is important to realize that atomic and non-atomic action refinement
both have their merits. In our opinion the choice between these two depends
on the application at hand. In this chapter we showed the following main
results:

• The set of refined traces of the abstract system is equal to the traces
of the refined system. This is important because it means that trace
refinement is compatible with LTS refinement; we do not leave some
traces out.

• The refinement of a complete abstract test suite that is conformance
trace complete and fail fast, results in a complete refined test suite.
This result is important because it shows that directly refining a test
suite is equivalent with first refining a system and then generating a
test suite.

With the knowledge we have now, it seems that we can reduce the num-
ber of constraints on the refinement function. The only ones that seem
necessary are the constraints on delta-preservation and reflection (1 to 3).
Furthermore we need our refinement transition system to have an explicit
end state.

Our refinement definitions, especially the ones for LTS-refinement and
test-case refinement are rather technical. It would be beneficial for the
developed theory to make the definitions easier to read and understand.
We think that lifting the definitions to a process notation will improve the
readability.

At first it was surprising how hard test-case refinement turned out to be.
The reason is that test-cases have only partial knowledge of the specifica-
tion. They literally are a set of traces: traces ending in a non-fail state are
suspension traces of the specification and traces ending in fail state are not.
The suspension traces can be refined in a way similar to trace refinement
(with the use of mini-tests). However the difficulty lies in figuring out which
traces do not belong to the set of suspension traces of the refined system.

120

5.8. Directions for further research

The abstract test-case and the refinement function alone provide not enough
information to do this.

It would be interesting to generalize the theory to non-atomic refinement.
The literature shows some solutions for non-atomic refinement of specifica-
tions. Most of them are in the realm of truly concurrent behavior models,
or process algebras (without distinction between input and output actions).
This is unfortunate, because our test theory is based on labeled transition
systems theory with interleaving semantics. Non-atomic trace and test-case
refinement will be a challenge. In our atomic case we were able to use
constraints to enable refinement of traces and test-cases without knowledge
of the abstract system. For non-atomic action refinement it is not clear if
this is still possible. Seeing the difficulty of identifying fail states in refined
test-cases for atomic action refinement (and the strong dependability on the
abstract test-suite), we believe that non-atomic test-case refinement will be
quite a challenge.

5.8 Directions for further research

We end this section with some gedanken experiments on non-atomic refine-
ment and relaxed refinement. We did not prove any properties on theories in
this section, so it is not clear if the sketched approach might work. However
we do think that is is an interesting direction in action-refinement research
based on LTSs. Furthermore, it sketches some interesting action refinement
scenarios and dilemmas.

5.8.1 Non-atomic model refinement

In Section 4.4 we showed the limitations of LTS models with interleaving
semantics for non-atomic action refinement. The main reason for this is that
with interleaving semantics we lose information about the independence be-
tween actions, for example independence that is the result of parallelism.
There are examples of process algebraic and event structure approaches for
non-atomic action refinement [GR01]. For action refinement in model-based
testing, this leaves us with a problem, because the model-based testing the-
ory (at least the ioco theory) is based on LTSs. A possibility is to adapt our
test theory to event structures or to base it directly on a process algebra.
Another possibility is to use models that capture the notion of independence
and are compatible with LTS based models. An example of such a model is
the Asynchronous Labeled Transition System (ALTS) [Bed88]. A more spe-
cific flavor of ALTSs, called Labeled Transition Systems with Independence
(LTSI) was introduced by Winskel ([WN94]). We will go into a little detail
to explain how action refinement with LTSI might work.

121

Chapter 5. Using atomic refinement to obtain refined test-cases

q1

q3q2

q4

LTSI
specification

µ2 µ1

t1 t2

t3 t4

µ2µ1

Figure 5.15: LTSI model of Example 5.8.2

Definition 5.8.1 [Transitions System with independence] A transition sys-
tem with independence is a 6-tuple 〈Q, I, U, T, start, R〉 where R ⊆ T × T is
an irreflexive, symmetric relation and 〈Q, I, U, T, start〉 is a transition sys-
tem.

With LTSI(I, U) we denote the class of LTSI with input alphabet I and
output alphabet U . As we can see an LTSI is basically an LTS. On top
of this it has a relation R that keeps track of the independencies between
transitions. When we have t1Rt2 for two transitions t1 and t2 this means
that t1 and t2 are independent of each other, i.e., the order of appearance
is flexible. In case ¬(t1Rt2), transition t1 is dependent of transition t2; this
means that the order of appearance of the actions of t1 and t2 is fixed and
t1 can not occur before t2. We use the notation Rd to indicate the inverse
of independence: dependence. We illustrate how LTSIs can help us to keep
track of concurrent behavior in the following example.

Example 5.8.2 In Figure 5.15 we show a transition system that either
models (µ1 ‖ µ2) or (µ1;µ2 + µ2;µ1). Based on the dependency relation
between the transitions an LTSI can distinguish the parallel case from the
choice case. If t1Rt2, t1Rt3, t2Rt4 and t3Rt4, we know that µ1 and µ2 in
these transitions are independent (we see that the order of µ1 and µ2 does
not matter). In case we want to model (µ1;µ2 + µ2;µ1) all transitions need
to be dependent. 2

A useful property for non-atomic action refinement with LTSI, is the
so called diamond closure ([DR95]). The term diamond refers to the form
of the transition system in case of parallelism (and choice), the way the
transitions t1 to t4 form a diamond in Figure 5.15. Without going into the
formal details, the diamond property in short states the following:

• If there is a choice between two independent transitions starting in the
same state, then these transitions are part of the same “diamond”.
We illustrate that with Figure 5.15: t1 and t2 start in the same state.

122

5.8. Directions for further research

When these transitions are independent this means that they can be
executed in arbitrary order. This means that there should be cor-
responding transitions, like t3 and t4, ending in the same state, as
depicted in the figure.

• Two independent “sequential” transitions, i.e., transitions that share
an intermediate state form a diamond. This means that if transition
t1 and t3 are independent in Figure 5.15 on the preceding page, there
should be transitions like t2 and t4 to form a diamond with.

• Two independent transitions that end in the same state are part of
the same diamond. t3 and t4 in Figure 5.15 on the facing page are
an example of this. When these two transitions are independent there
should be corresponding transitions, like t1 and t2 to form a diamond,
because the actions of t3 and t4 can be performed in arbitrary order.

Bednarczyk ([Bed88]) shows that ALTS models underlie a variety of
non-interleaving models for concurrency. In particular they subsume so-
called Mazurkiewicz trace languages and (prime) event structures. Together
with the work of Rensink and Wehrheim ([RW01]) on dependencies this
strengthens us in our believe that it should be possible to come up with
an action refinement approach for LTSIs. The following example shows a
gedanken experiment on action refinement with LTSI.

Example 5.8.3 In Figure 5.16 on the next page we show an LTSI (left
side) that models (a ‖ x); a;x. In order to be able to refer to the states
and transitions we added their identifiers. Table 5.1 gives the dependency
relation for the system; we only record the dependency relation between
transitions that have a common state. The table tells us that transitions
t1 and t2 are independent (as are t1 and t3, and t2 and t4). Therefore
we can conclude that the diamond that transitions t1, t2, t3 and t4 form
represents parallel behavior and not choice behavior (in the case of choice,
these transitions would be dependent and then the system would model

Transition t1 t2 t3 t4 t5 t6
t1 (q0, a, q1) R R

t2 (q0, x, q2) R R

t3 (q1, x, q3) R R Rd
t4 (q2, a, q3) R R Rd
t5 (q3, a, q4) Rd Rd Rd
t6 (q4, x, q5) Rd

Table 5.1: Dependency relation for abstract system

123

Chapter 5. Using atomic refinement to obtain refined test-cases

q4

q5

r0

r1 s1

q0

q1

r2

q2

q3

s0
q0,X

q2, t1q1, r1

q1, r2

q3, s1

q4, r1

q4, r2

q3, r2

q3, r1

q5, t1

r(a) r(x)

refined
specificationLTS’s

refinementabstract
specification

!x?a

!x ?a

?a

!x

t1 t2

t3

t5

t6

t4

!x !x

?a2

?a1

!x

!x

?a1

!x

t′1a

t′4at′1c

t′5a

t′4bt′3

t′5b

?a2

?a1

?a2

?a2

?a1
?a1

t′5c

t′6

t′2

t′1b

Figure 5.16: Non Atomic Refinement of LTSI

(a;x+x; a); a;x). Transitions t5 and t6 are the result of sequential behavior
and therefore dependent.

Now suppose we refine a → a1; a2 and x → x, like the refinement LTSs
shown in the middle of Figure 5.16 (there’s no concurrency in the refine-
ment LTSs, so all transitions are dependent). When we refine the transition
system with our atomic approach from Chapter 5 we obtain the transition
system on the right-hand side in Figure 5.16 (without the dashed transition
t′1c); for easier reading we named the transitions in the refined system after
the original transitions; for example transitions t′1a and t′1b have t1 as their
abstract original.

Because transitions t1 and t2 are independent we expect non-atomic
action refinement to come up with (dashed) transition t′1c. With the aid of
the independence relation and the diamond property this should be possible.
When we let the refinements inherit their dependency relation from the
abstract transition, we know that t′1a and t′2 are independent and therefore
they should form a diamond. With this piece of information we know that
transition t′1c should be added.

Notice that this system does not yet qualify as a proper LTSI. As t′1bRt
′
1c

and t1b′Rt
′
3 we would expect t′3 and t′4b to end in the same state, thus forming

a diamond with t′1b and t′1c. Because of the way we have defined atomic
action refinement (q3, s1) and (q3, r2) are different states. In principle we

124

5.8. Directions for further research

!a

Uδ\{x} ?x

fail

abstract test case 2

!a

?xUδ\{x}

fail

abstract test case 1

Uδ\{x} ?x

!a

fail

!a

fail

Uδ\{x} ?x

Figure 5.17: Abstract test-cases for non-atomic refinement example

can consider them to be the same state (it would result in a bisimilar system).
For this example we could minimize the system by taking (q3, s1) and (q3, r2)
together. Another approach might be to use a less strict form of the diamond
closure. 2

We strongly encourage further research on this topic. Once we have a
proper LTSI we can generate test-cases with our existing test-case generation
algorithm. However, non-atomic refinement of models is only half the story
for action refinement in model-based testing. It allows us to refine models
and (re)generate test-cases, but it leaves us still with the problem of test-case
refinement.

5.8.2 Non-atomic test-case refinement

Like with atomic refinement we would like to have two ways to obtain a re-
fined test suite for non-atomic refinement. One by first refining the abstract
specification and generating refined test-cases from the refined specification,
as we discussed above. The other approach is to refine an abstract test suite
directly.

The issue with test-case refinement is that test-cases contain little infor-
mation about the specification from which they were derived. This makes it
difficult to assign verdicts for all possible observations and in some cases we
can only assign the inconclusive verdict. For non-atomic refinement this
lack of information only increases. We illustrate this with an example.

Example 5.8.4 We use the abstract and refined specifications of Figure 5.16
on the facing page; the abstract system modeling (a ‖ x); a;x and the refined
system modeling (a1; a2 ‖ x); a1; a2;x. In Figure 5.17 we show some abstract
test-cases and in Figure 5.18 on the following page we show some refined
test-cases. Suppose that we refine the abstract test-case with: a → a1; a2

125

Chapter 5. Using atomic refinement to obtain refined test-cases

!a1fail

test case 2

!a2

refined

!a1

!a2

?x

?xUδ\{x}

fail

!a1

?xUδ\{x}

!a2fail

test case 3
refined

!a1

fail

U

?x

?δ

!a2

fail

Uδ\{x}

Uδ\{x}

test case 1

!a2

?x

fail

!a1

refined

!a1

!a2

?xUδ\{x}

fail

Uδ\{x}

Figure 5.18: Refined test-cases for non-atomic refinement example

and x→ x, how do we obtain all possible non-atomically refined test-cases?
For test-cases 1 and 2 this seems rather straightforward, as we can obtain
them by atomic test-case refinement. For refined test-case 3, this is a dif-
ferent story. How do we know that the first occurrence of action x does not
depend on a2, whereas the second occurrence does? We do not have this
kind of information in our test set, not even if it is complete. 2

As we saw in the previous example we need more information to non-
atomically refine test-cases. An interesting approach would be to add a
dependency relation to test-cases, like in the case with specifications. We
have to think of a new way to use the dependency relation; because of the
linear nature of test-cases we cannot use the diamond closure.

5.8.3 Relaxed refinement

When we have knowledge about dependencies we can also apply this in our
refinement relation. Relaxed refinement makes it possible to change the
dependencies between refined actions. We illustrate relaxed refinement with
the following example.

Example 5.8.5 In Figure 5.19 on the next page we show an LTS model for
x; a (left). In this case we refine a→ a and x→ x1;x2. After refinement we
obtain the refined model (middle). This model has the implicit assumption

126

5.8. Directions for further research

system

!a

abstract

?x

system 1
refined

system 2
refined

!a

!a

?x1

?x2

?x1

?x2

Figure 5.19: Relaxed refinement example

that because a depends on x, a also depends on x1 and x2. But what if
we want a system where a is independent of x2? On the right-hand side of
Figure 5.19 we show the refinement of the abstract model with this kind of
dependency. This more liberal use of dependencies is an example of relaxed
refinement.

The reader may wonder if relaxed refinement is realistic, and whether it
is a solution to action refinement problems in practice? Suppose that x is a
remote procedure call, which we refine to a call part (x1) and a response part
(x2). It depends on the functionality of the system whether a depends on x2

or not; in other words whether a needs some information that x2 provides.
If x1 writes some data to a database, or writes some logging data to a file,
it can be perfectly fine that we do not want to wait for the response x2 and
want continue with a right away (for example for performance reasons). 2

Like with non-atomic refinement we think that using a dependency re-
lation together with (some form of) the diamond closure is an interesting
possibility to research.

Example 5.8.6 In Figure 5.20 on the next page we show an abstract test-
case (left-hand side) of the abstract transition system in Figure 5.19 (left-
hand side). We want to refine the test-case such that it becomes a test-
case for the refined system on the right-hand side of Figure 5.19. Refined
test-case 1 is a straight forward (atomic) refinement, this should pose no
problem. Test-case 2 is a refinement that takes the independence between a
and x2 into account. We somehow have to add this information to the test-
case and/or refinement function and we need to have enough information to
predict all allowed responses of the system. 2

127

Chapter 5. Using atomic refinement to obtain refined test-cases

test case 2
refined

!a

δotherwise

test case

!a

abstract

pass

δ

?x

fail

fail fail

fail

?x

δotherwise

otherwise

fail pass fail

otherwise
failfail

?x1, ?x2

δotherwise

fail fail

fail pass fail

failfail

otherwise

otherwise

?x1, ?x2

δ

failfail

otherwise δ

!a

test case 1
refined

?x1

δ

?x2

δ

?x2

?x1

Figure 5.20: Relaxed test-case refinement example

128

Chapter 6

Concluding remarks

T
he work in this thesis is centered around, what used to be, two open
issues in model-based testing: compositional testing and action refine-

ment in model-based testing. Both enable a more flexible use of models
and test-cases in model-based testing. In this thesis we have explained our
contributions to this research. Because the former chapters already contain
conclusions specific to those chapters, we focus on the main contributions of
this thesis and some ideas for further research.

We started with an overview of the research in model-based testing in
Chapter 2. We defined and explained the testing concepts that we use
throughout the thesis and we treated the ioco-theory, together with some
theories that influenced it.

We find that an important idea, though somewhat hidden, behind ioco
is: test what is specified and leave the non-specified parts to the implemen-
tation freedom of the developer. This means that if it is important to test
the non-specified parts, someone should specify them first. While this idea
and its implementation in ioco works for systems without parallel behavior,
we showed in Chapter 3 that it does not work as expected in compositional
testing: ioco is not suitable for compositional testing, because the ioco
property is not preserved when testing communicating components. The
main reason for this is that ioco allows underspecification of input actions.
We showed that when specifications are modeled by IOTSs, ioco is suitable
for compositional testing. In order to be able to test with models that are
underspecified for input actions, we proposed three approaches. Our first
approach was to make an LTS model input complete by with demonic com-
pletion, such that it captures our notion of underspecification. Our second
investigation was to change the ioco implementation relation to uioco. Our
final solution was to change the semantics of the parallel composition oper-
ator. With this result it has become possible to test systems that consist
of several parallel components, with the ioco theory. Furthermore we have
shed some light on the, in our opinion, hidden meaning and semantics of

129

Chapter 6. Concluding remarks

underspecification in the specification and input-enabledness in the iut.
A constraint that we ran into in Chapter 3 is that the ioco theory

assumes specifications to be strongly convergent. It would be very helpful if
this constraint is removed in the future. We do not see any technical reasons
prohibiting this, see for example the way τ -loops are treated in [JJ05]. It
may involve quite some work, as some of the ioco proofs need to be checked
and/or redone.

The next chapter, Chapter 4, introduced the area of action refinement
in model-based testing. We presented our own action refinement approach
in Chapter 5. We tried to put as little constraints as possible on our action
refinement function. The main constraint is our limitation to atomic refine-
ment. In the chapter we showed how to refine traces, transition systems and
test-cases. We showed that direct refinement of a test suite generated from
an abstract model is equivalent to first refining the model and regenerat-
ing the test suite. We concluded the chapter with suggestions for further
research in the area of non-atomic and relaxed test-case refinement.

Looking back, it was rather unexpected how hard it was to apply action
refinement to model-based testing. Especially the fact that test-cases do not
have enough information to facilitate (non) atomic action refinement. After
reading our work this may come as a surprise, as it seems rather obvious
now.1. This is especially surprising since many of the tests used in practice
are abstract tests, that require refinement of the actions before they can be
used in test-execution. Contrary to our work, these refinements are generally
done by humans, but after reading our work, it makes one wonder what is
actually tested and how many errors remain hidden.

While doing our research on action refinement we looked into several
test-case definitions for inspiration for a richer test-case formalism. Based
on this exercise, we feel that model-based testing research would benefit
from further work on test-cases and their definition. The main focus in
model-based testing research seems to be on test-case derivation from a
formal model. Other aspects, like for example the relation to the original
model (important for our work), and the recording of what happened during
test-case execution seem neglected. For example with Tretmans’ definition
of a test-case [Tre08] it is not possible to define what trace was actually
executed against the iut. This is not an exception, see for example the
test-case definitions of [JJ05]) or [LY96] and [PY00] in the FSM research.
Another aspect is that we can identify at least three abstraction levels in
a test-case: the abstract test-case in terms of the model, the instantiated
test-case (in which actions are refined and abstract data types are made
concrete) and the concrete test-case (with actions in terms of iut). This
does not fit with the current test-case definitions.

1Quoting soccer player Johan Cruijff: “Je gaat het pas zien als je het doorhebt.” (You
only see it, when you’re aware of it.)

130

Appendix A

Proofs of Chapter 3:
Compositional testing with
ioco

A.1 Proofs of Section 3.3.1: Parallel composition

In the proofs we use the notation Lδp to denote Lp ∪ {δ} for a system p.

Proposition A.1.1 Let p ∈ IOTS(Ip, Up), q ∈ IOTS(Iq, Uq), r ∈ Qp‖q
with Ip ∩ Iq = Up ∩ Uq = ∅.

1. ∀a ∈ Lp \ Lq : p‖q a−→ r ⇔ ∃p′ : p a−→ p′ ∧ r = p′‖q
2. ∀a ∈ Lq \ Lp : p‖q a−→ r ⇔ ∃q′ : q a−→ q′ ∧ r = p‖q′
3. p‖q τ−→ r ⇔ (∃p′ : p τ−→ p′ ∧ r = p′‖q)∨ (∃q′ : q τ−→ q′ ∧ r = p‖q′)
4. ∀a ∈ (Lp ∩ Lq) ∪ {δ} : p‖q a−→ r ⇔ ∃p′, q′ : p a−→ p′ ∧ q a−→ q′ ∧ r = p′‖q′

2

Proof
1. Assume a ∈ Lp \ Lq

only if:
p‖q a−→ r

⇒ (∗ definition ‖ ∗)
∃p′ : p a−→ p′ ∧ r = p′‖q

if:
∃p′ : p a−→ p′ ∧ r = p′‖q

⇒ (∗ definition ‖ ∗)
p‖q a−→ r

2. Analogous to 1
3. Analogous to 1
4. The case a ∈ Lp ∩ Lq is analogous to 1. Here the proof for a = δ is

given.

131

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

only if: First we show r = p‖q, then the remaining part of the proof
is given.

p‖q δ−→ r
⇒ (∗ Definition δ ∗)

p‖q δ−→ r∧ r = p‖q
(A.1)

p‖q δ−→ r
⇒ (∗ Definition δ ∗)
∀µ ∈ Up ∪ Uq ∪ {τ} : p‖q µ−−→/

⇒ (∗ Definition ‖ ∗)
p τ−−→/ ∧ q τ−−→/
∧∀µ ∈ (Up\Lq) : p µ−−→/
∧∀µ ∈ (Uq\Lp) : q µ−−→/
∧∀µ ∈ Lp ∩ Lq : p µ−−→/ ∨ q µ−−→/

⇒ (∗ p, q ∈ IOTS ∗)
p τ−−→/ ∧ q τ−−→/
∧∀µ ∈ (Up\Lq) : p µ−−→/
∧∀µ ∈ (Uq\Lp) : q µ−−→/
∧∀µ ∈ Lp ∩ Lq : p µ−−→/ ∨ q µ−−→/
∧∀µ ∈ Ip : p

µ
=⇒ ∧∀µ ∈ Iq : q

µ
=⇒

⇒ (∗ p, q τ−−→/ ∗)
p τ−−→/ ∧ q τ−−→/
∧∀µ ∈ (Up\Lq) : p µ−−→/
∧∀µ ∈ (Uq\Lp) : q µ−−→/
∧∀µ ∈ Lp ∩ Lq : p µ−−→/ ∨ q µ−−→/
∧∀µ ∈ Ip : p µ−→ ∧∀µ ∈ Iq : q µ−→

⇒ (∗ Definition IOTS: I ∩ U = ∅ ∗)
p τ−−→/ ∧ q τ−−→/
∧∀µ ∈ (Up\Lq) : p µ−−→/
∧∀µ ∈ (Uq\Lp) : q µ−−→/
∧∀µ ∈ Up ∩ Lq : p µ−−→/
∧∀µ ∈ Lp ∩ Uq : q µ−−→/

⇒ (∗ Set operations ∗)
p τ−−→/ ∧ q τ−−→/
∧∀µ ∈ Up : p µ−−→/
∧∀µ ∈ Uq : q µ−−→/

⇒ (∗ definition δ and r = p‖q (see A.1) ∗)
p δ−→ p∧ q δ−→ q ∧ r = p‖q

132

A.1. Proofs of Section 3.3.1: Parallel composition

if: Let r = p‖q
p δ−→ p∧ q δ−→ q

⇒ (∗ definition δ ∗)
∀µ ∈ Up ∪ {τ} : p µ−−→/ ∧∀µ ∈ Uq ∪ {τ} : q µ−−→/

⇒ (∗ definition ‖ ∗)
∀µ ∈ Up ∪ Uq ∪ {τ} : p‖q µ−−→/

⇒ (∗ definition δ ∗)
p‖q δ−→ p‖q

⇒ (∗ Given: r = p‖q ∗)
p‖q δ−→ r

2

Proposition A.1.2 Let p ∈ IOTS(Ip, Up), q ∈ IOTS(Iq, Uq), r ∈ Qp‖q,
σ ∈ L∗δ , with L = Ip ∪ Iq ∪ Up ∪ Uq and Ip ∩ Iq = Up ∩ Uq = ∅.

p‖q σ
=⇒ r ⇔ ∃p′, q′ : p

σ�Lδp
====⇒ p′ ∧ q

σ�Lδq
===⇒ q′ ∧ r = p′‖q′

2

Proof

Only if: Proof by induction on the structure of σ.

Basic step: σ = ε.
p‖q ε

=⇒ r
⇒ (∗ Proposition A.1.1.3 and definition of

ε
=⇒ ∗)

∃p′, q′ : p ε
=⇒ p′ ∧ q ε

=⇒ q′ ∧ r = p′‖q′
⇒ (∗ Definition 2.3.5 of projection ∗)

∃p′, q′ : p
ε�Lδp

===⇒ p′ ∧ q
ε�Lδq

===⇒ q′ ∧ r = p′‖q′

Induction step: We make the assumption that the proposition holds for
σ′ in σ = a · σ′, with a ∈ Lδ. We identify three cases:

1. Assume a ∈ Lδp ∩ Lδq (= (Lp ∩ Lq) ∪ {δ}).

133

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

p‖q a·σ′
===⇒ r

⇒ (∗ Definition
a·σ′

===⇒ ∗)
∃r1, r2 : p‖q ε

=⇒ r1
a−→ r2

σ′
==⇒ r

⇒ (∗ Basic step ∗)
∃p1, q1, r2 : p

ε
=⇒ p1 ∧ q

ε
=⇒ q1 ∧ p1‖q1

a−→ r2
σ′

==⇒ r
⇒ (∗ Proposition A.1.1.4 ∗)
∃p1, p2, q1, q2 : p

ε
=⇒ p1 ∧ q

ε
=⇒ q1 ∧ p1

a−→ p2 ∧ q1
a−→ q2

∧ p2‖q2
σ′

==⇒ r
⇒ (∗ Definition

a
=⇒ ∗)

∃p2, q2 : p
a

=⇒ p2 ∧ q
a

=⇒ q2 ∧ p2‖q2
σ′

==⇒ r
⇒ (∗ Induction ∗)

∃p′, p2, q
′, q2 : p

a
=⇒ p2

σ′�Lδp
====⇒ p′ ∧ q a

=⇒ q2

σ′�Lδq
====⇒ q′

∧ r = p′‖q′
⇒ (∗ Definition 2.3.5 of projection ∗)

∃p′, q′ : p
(a·σ′)�Lδp

======⇒ p′ ∧ q
(a·σ′)�Lδq

======⇒ q′ ∧ r = p′‖q′
⇒ (∗ σ = a · σ′ ∗)

∃p′, q′ : p
σ�Lδp

====⇒ p′ ∧ q
σ�Lδq

===⇒ q′ ∧ r = p′‖q′

2. Assume a ∈ Lδp \ Lδq (= Lp\Lq).

p‖q a·σ′
===⇒ r

⇒ (∗ Definition
σ

=⇒ ∗)
∃r1, r2 : p‖q ε

=⇒ r1
a−→ r2

σ′
==⇒ r

⇒ (∗ Basic step ∗)
∃p1, q1, r2 : p

ε
=⇒ p1 ∧ q

ε
=⇒ q1 ∧ p1‖q1

a−→ r2
σ′

==⇒ r
⇒ (∗ Proposition A.1.1.1 ∗)
∃p1, p2, q1 : p

ε
=⇒ p1 ∧ q

ε
=⇒ q1 ∧ p1

a−→ p2 ∧ p2‖q1
σ′

==⇒ r
⇒ (∗ Definition of

a
=⇒ ∗)

∃p2, q1 : p
a

=⇒ p2 ∧ q
ε

=⇒ q1 ∧ p2‖q1
σ′

==⇒ r
⇒ (∗ Induction ∗)

∃p2, p
′, q1, q

′ : p
a

=⇒ p2

σ′�Lδp
====⇒ p′ ∧ q ε

=⇒ q1

σ′�Lδq
====⇒ q′

∧ r = p′‖q′
⇒ (∗ Definition 2.3.5 of projection ∗)

∃p′, q′ : p
(a·σ′)�Lδp

======⇒ p′ ∧ q
(a·σ′)�Lδq

======⇒ q′ ∧ r = p′‖q′
⇒ (∗ σ = a · σ′ ∗)

∃p′, q′ : p
σ�Lδp

====⇒ p′ ∧ q
σ�Lδq

===⇒ q′ ∧ r = p′‖q′

3. Assume a ∈ Lδq \ Lδp. This is symmetric with the previous case.

134

A.1. Proofs of Section 3.3.1: Parallel composition

if: By induction on the structure of σ.

Basic step: σ = ε.

∃p′, q′ : p
ε�Lδp

===⇒ p′ ∧ q
ε�Lδq

===⇒ q′

⇒ (∗ Definition 2.3.5 of projection ∗)
∃p′, q′ : p ε

=⇒ p′ ∧ q ε
=⇒ q′

⇒ (∗ Proposition A.1.1.3 and definition of
ε

=⇒ ∗)
∃p′, q′ : p‖q ε

=⇒ p′‖q′
⇒ (∗ σ = ε ∗)
∃p′, q′ : p‖q σ

=⇒ p′‖q′
⇒ (∗ Given r = p′‖q′ ∗)

p‖q σ
=⇒ r

Induction step: We assume the proposition holds for σ′ in σ = a · σ′,
a ∈ Lδ. We identify three cases:

1. Assume a ∈ Lδp ∩ Lδq (= (Lp ∩ Lq) ∪ {δ}):

∃p′, q′ : p
(a·σ′)�Lδp

======⇒ p′ ∧ q
(a·σ′)�Lδq

======⇒ q′

⇒ (∗ Definition 2.3.5 of projection ∗)

∃p2, p
′, q2, q

′ : p
a

=⇒ p2

σ′�Lδp
====⇒ p′ ∧ q a

=⇒ q2

σ′�Lδq
====⇒ q′

⇒ (∗ Definition of =⇒ ∗)
∃p1, p2, p

′, q1, q2, q
′ :

p
ε

=⇒ p1
a−→ p2

σ′�Lδp
====⇒ p′ ∧ q ε

=⇒ q1
a−→ q2

σ′�Lδq
====⇒ q′

⇒ (∗ Basic step ∗)
∃p1, p2, p

′, q1, q2, q
′ :

p‖q ε
=⇒ p1‖q1 ∧ p1

a−→ p2

σ′�Lδp
====⇒ p′ ∧ q1

a−→ q2

σ′�Lδq
====⇒ q′

⇒ (∗ Proposition A.1.1.4 ∗)
∃p1, p2, p

′, q1, q2, q
′ :

p‖q ε
=⇒ p1‖q1

a−→ p2‖q2 ∧ p2

σ′�Lδp
====⇒ p′ ∧ q2

σ′�Lδq
====⇒ q′

⇒ (∗ Definition of =⇒ ∗)

∃p2, p
′, q2, q

′ : p‖q a
=⇒ p2‖q2 ∧ p2

σ′�Lδp
====⇒ p′ ∧ q2

σ′�Lδq
====⇒ q′

⇒ (∗ Induction ∗)
∃p2, p

′, q2, q
′ : p‖q a

=⇒ p2‖q2 ∧ p2‖q2
σ′

==⇒ p′‖q′
⇒ (∗ Definition of =⇒ ∗)
∃p′, q′ : p‖q a·σ′

===⇒ p′‖q′
⇒ (∗ σ = a · σ′ ∗)
∃p′, q′ : p‖q σ

=⇒ p′‖q′
⇒ (∗ Given r = p′‖q′ ∗)

p‖q σ
=⇒ r

135

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

2. Assume a ∈ Lδp \ Lδq (= Lp\Lq):

∃p′, q′ : p
(a·σ′)�Lδp

======⇒ p′ ∧ q
(a·σ′)�Lδq

======⇒ q′

⇒ (∗ Definition 2.3.5 of projection ∗)

∃p2, p
′, q′ : p

a
=⇒ p2

σ′�Lδp
====⇒ p′ ∧ q

σ′�Lδq
====⇒ q′

⇒ (∗ Definition of =⇒ ∗)

∃p1, p2, p
′, q′ : p

ε
=⇒ p1

a−→ p2

σ′�Lδp
====⇒ p′ ∧ q

σ′�Lδq
====⇒ q′

⇒ (∗ Basic step ∗)

∃p1, p2, p
′, q′ : p‖q ε

=⇒ p1‖q ∧ p1
a−→ p2

σ′�Lδp
====⇒ p′

∧ q
σ′�Lδq

====⇒ q′

⇒ (∗ Proposition A.1.1.1 ∗)

∃p1, p2, p
′, q′ : p‖q ε

=⇒ p1‖q a−→ p2‖q ∧ p2

σ′�Lδp
====⇒ p′

∧ q
σ′�Lδq

====⇒ q′

⇒ (∗ Definition of =⇒ ∗)

∃p2, p
′, q′ : p‖q a

=⇒ p2‖q ∧ p2

σ′�Lδp
====⇒ p′ ∧ q

σ′�Lδq
====⇒ q′

⇒ (∗ Induction ∗)
∃p2, p

′, q′ : p‖q a
=⇒ p2‖q ∧ p2‖q

σ′
==⇒ p′‖q′

⇒ (∗ Definition of =⇒ ∗)
∃p′, q′ : p‖q a·σ′

===⇒ p′‖q′
⇒ (∗ σ = a · σ′ ∗)
∃p′, q′ : p‖q σ

=⇒ p′‖q′
⇒ (∗ Given r = p′‖q′ ∗)

p‖q σ
=⇒ r

3. Assume a ∈ Lδq \ Lδp. This is symmetric with the previous case.

2

Lemma A.1.3 Let i, s ∈ IOTS(I, U), then:

i ioco s ⇔ Straces(i) ⊆ Straces(s)

2

Proof

only if: Proof by induction on the structure of σ, let σ ∈ Straces(i).

Basic Step: σ = ε.
ε ∈ Straces(s) trivially holds.

Induction step : We identify two cases:

1. σ = ρ·a with a ∈ I:
By induction ρ ∈ Straces(s), so ∃s′ : s

ρ
=⇒ s′, and since s ∈

IOTS(I, U), s′
a

=⇒ always holds. Hence, ρ·a ∈ Straces(s).

136

A.1. Proofs of Section 3.3.1: Parallel composition

2. σ = ρ·x with x ∈ U ∪ {δ}:
If i

ρ·x
==⇒ then by definition of ioco: x ∈ out(i after ρ), and since

i ioco s and by induction ρ ∈ Straces(s) we can conclude that
x ∈ out(s after ρ). Hence, s

ρ·x
==⇒ , and ρ · x ∈ Straces(s).

if: Let σ ∈ Straces(s) and x ∈ out(i after σ), then i
σ·x

==⇒ , which implies
σ·x ∈ Straces(i), hence σ·x ∈ Straces(s) and s

σ·x
==⇒ , from which it

follows that x ∈ out(s after σ).

2

Theorem 3.3.3 Let s1, i1 ∈ IOTS(I1, U1), s2, i2 ∈ IOTS(I2, U2) with
I1 ∩ I2 = U1 ∩ U2 = ∅.

i1 ioco s1 ∧ i2 ioco s2 ⇒ i1‖i2 ioco s1‖s2

2

Proof To be proved according to Lemma A.1.3:

Straces(i1) ⊆ Straces(s1)∧Straces(i2) ⊆ Straces(s2)

⇒ Straces(i1‖i2) ⊆ Straces(s1‖s2)

σ ∈ Straces(i1‖i2)
⇒ (∗ Definition of Straces ∗)

i1‖i2
σ

=⇒
⇒ (∗ Proposition A.1.2 ∗)

i1
σ�Lδi1====⇒ ∧ i2

σ�Lδi2====⇒
⇒ (∗ Premise: Li1 = Ls1 , Li2 = Ls2 ∗)

s1

σ�Lδs1====⇒ ∧ s2

σ�Lδs2====⇒
⇒ (∗ Proposition A.1.2 ∗)

s1‖s2
σ

=⇒
⇒ (∗ Definition of Straces ∗)

σ ∈ Straces(s1‖s2)

2

137

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

A.2 Proofs of Section 3.3.2: Hiding

Definition A.2.1 The hiding of σ ∈ L∗δ with A ⊆ L, denoted as σ\A, is
defined as follows:

σ\A =def


ε σ = ε
σ′\A σ = a·σ′ with a ∈ A
a·(σ′\A) σ = a·σ′ with a /∈ A
δ·(σ′\A) σ = δ·σ′

Proposition A.2.2 Let p ∈ LTS(I, U) where U is partitioned in sets U1

and U2.

1. p a−→ p′ with a ∈ I ∪ U1 ⇒ hide U2 in p a−→hide U2 in p′

2. p a−→ p′ with a ∈ U2 ⇒ hide U2 in p τ−→hide U2 in p′

3. p τ−→ p′ ⇒ hide U2 in p τ−→hide U2 in p′

4. p δ−→ p′ ⇒ hide U2 in p δ−→hide U2 in p
5. hide U2 in p a−→ q with a ∈ I ∪U1 ⇒ ∃p′ : p a−→ p′ ∧ q = hide U2 in p′

6. hide U2 in p τ−→ q ⇒ (∃p′ : p τ−→ p′ ∧ q = hide U2 in p′)
∨ (∃p′, a ∈ U2 : p a−→ p′ ∧ q = hide U2 in p′)

7. hide U2 in p δ−→ q ⇒ p δ−→ p∧ q = hide U2 in p

2

Proof

1. p a−→ p′ ∧ a ∈ I ∪ U1

⇒ (∗ Definition of hide ∗)
hide U2 in p a−→hide U2 in p′

2. p a−→ p′ ∧ a ∈ U2

⇒ (∗ Definition of hide ∗)
hide U2 in p τ−→hide U2 in p′

3. p τ−→ p′

⇒ (∗ Definition of hide ∗)
hide U2 in p τ−→hide U2 in p′

4. p δ−→ p′

⇒ (∗ Definition of quiescence ∗)
(∀µ ∈ U ∪ {τ} : p µ−−→/)

⇒ (∗ Definition of hide ∗)
(∀µ ∈ U1 ∪ {τ} : hide U2 in p µ−−→/)

⇒ (∗ Definition of quiescence ∗)
hide U2 in p δ−→hide U2 in p

5. hide U2 in p a−→ q
⇒ (∗ Definition of hide ∗)
∃p′ : p a−→ p′ ∧ q = hide U2 in p′

138

A.2. Proofs of Section 3.3.2: Hiding

6. hide U2 in p τ−→ q
⇒ (∗ Definition of hide ∗)

(∃p′ : p τ−→ p′ ∧ q = hide U2 in p′) ∨
(∃p′,∃a ∈ U2 : p a−→ p′ ∧ q = hide U2 in p′)

7. hide U2 in p δ−→ q
⇒ (∗ Definition of quiescence ∗)
∀µ ∈ U1 ∪ {τ} : hide U2 in p µ−−→/ ∧ q = hide U2 in p

⇒ (∗ Definition of hide ∗)
(∀µ ∈ U1 : p µ−−→/) ∧ (∀µ ∈ U2 : p µ−−→/) ∧
p τ−−→/ ∧ q = hide U2 in p

⇒ (∗ Logical axioms ∗)
∀µ ∈ U ∪ {τ} : p µ−−→/ ∧ q = hide U2 in p

⇒ (∗ Definition of quiescence ∗)
p δ−→ p∧ q = hide U2 in p

2

Proposition A.2.3 Let p ∈ LTS(I, U) where U is partitioned into U1 and
U2; let σ ∈ L∗δ be arbitrary.

1. p
σ

=⇒ p′ ⇒ hide U2 in p
σ\U2====⇒hide U2 in p′

2. hide U2 in p
σ

=⇒ q ⇒ ∃p′, ∃σ′ ∈ L∗δ : p
σ′

==⇒ p′ ∧ q = hide U2 in p′ ∧σ =
σ′\U2

2

Proof

1. By induction on the structure of σ:
σ = ε:

Using ε\U2 = ε, the proposition reduces to:

p
ε

=⇒ p′ ⇒ hide U2 in p
ε

=⇒hide U2 in p′ (A.2)

which, using the definition of
ε

=⇒ , is rewritten to:

p τn−−→ p′ ⇒ hide U2 in p
ε

=⇒hide U2 in p′ (A.3)

which is proved by induction on n:

n = 0:
p τn−−→ p′

⇒ (∗ n = 0 and from definition of
ε

=⇒ : p τ0−−→ p′ ⇔ p = p′ ∗)
p = p′

⇒ (∗ definition of
ε

=⇒ ∗)
hide U2 in p

ε
=⇒hide U2 in p′

139

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

n = n′ + 1:
p τn−−→ p′

⇒ (∗ n = n′ + 1 and definition of
ε

=⇒ ∗)
∃p1 : p τ−→ p1 ∧ p1

τn
′

−−→ p′

⇒ (∗ Proposition A.2.2.3 ∗)
hide U2 in p τ−→hide U2 in p1 ∧ p1

τn
′

−−→ p′

⇒ (∗ induction on equation (A.3) ∗)
hide U2 in p τ−→hide U2 in p1 ∧hide U2 in p1

ε
=⇒hide U2 in p′

⇒ (∗ definition of
ε

=⇒ ∗)
hide U2 in p

ε
=⇒hide U2 in p′

σ = a·ρ, with a ∈ I ∪ U1, ρ ∈ L∗δ :
p

σ
=⇒ p′

⇒ (∗ σ = a·ρ ∗)
p

a·ρ
==⇒ p′

⇒ (∗ definition of
a·ρ

==⇒ ∗)
∃p1, p2 : p

ε
=⇒ p1 ∧ p1

a−→ p2 ∧ p2
ρ

=⇒ p′

⇒ (∗ equation (A.2) ∗)
∃p1, p2 : hide U2 in p

ε
=⇒hide U2 in p1 ∧ p1

a−→ p2 ∧ p2
ρ

=⇒ p′

⇒ (∗ Proposition A.2.2.1 ∗)
∃p1, p2 : hide U2 in p

ε
=⇒hide U2 in p1

∧hide U2 in p1
a−→hide U2 in p2 ∧ p2

ρ
=⇒ p′

⇒ (∗ induction ∗)
∃p1, p2 : hide U2 in p

ε
=⇒hide U2 in p1

∧hide U2 in p1
a−→hide U2 in p2 ∧

hide U2 in p2
ρ\U2====⇒hide U2 in p′

⇒ (∗ definition of
a·(ρ\U2)

======⇒ ∗)
hide U2 in p

a·(ρ\U2)
======⇒hide U2 in p′

⇒ (∗ Definition A.2.1 ∗)
hide U2 in p

(a·ρ)\U2======⇒hide U2 in p′

⇒ (∗ σ = a·ρ ∗)
hide U2 in p

σ\U2====⇒hide U2 in p′

140

A.2. Proofs of Section 3.3.2: Hiding

σ = a·ρ, with a ∈ U2, ρ ∈ L∗δ :
p

σ
=⇒ p′

⇒ (∗ σ = a·ρ ∗)
p

a·ρ
==⇒ p′

⇒ (∗ definition
a·ρ

==⇒ ∗)
∃p1, p2 : p

ε
=⇒ p1 ∧ p1

a−→ p2 ∧ p2
ρ

=⇒ p′

⇒ (∗ equation (A.2) ∗)
∃p1, p2 : hide U2 in p

ε
=⇒hide U2 in p1 ∧ p1

a−→ p2 ∧ p2
ρ

=⇒ p′

⇒ (∗ Proposition A.2.2.2 ∗)
∃p1, p2 : hide U2 in p

ε
=⇒hide U2 in p1

∧hide U2 in p1
τ−→hide U2 in p2 ∧ p2

ρ
=⇒ p′

⇒ (∗ induction ∗)
∃p1, p2 : hide U2 in p

ε
=⇒hide U2 in p1

∧hide U2 in p1
τ−→hide U2 in p2

∧hide U2 in p2
ρ\U2====⇒hide U2 in p′

⇒ (∗ definition of
ρ\U2====⇒ ∗)

hide U2 in p
ρ\U2====⇒hide U2 in p′

⇒ (∗ Definition A.2.1 ∗)
hide U2 in p

(a·ρ)\U2======⇒hide U2 in p′

⇒ (∗ σ = a·ρ ∗)
hide U2 in p

σ\U2====⇒hide U2 in p′

σ = δ·ρ, with ρ ∈ L∗δ :
p

σ
=⇒ p′

⇒ (∗ σ = δ·ρ ∗)
p

δ·ρ
==⇒ p′

⇒ (∗ definition
δ·ρ

==⇒ and definition of quiescence ∗)
∃p1 : p

ε
=⇒ p1 ∧ p1

δ−→ p1 ∧ p1
ρ

=⇒ p′

⇒ (∗ equation (A.2) ∗)
∃p1 : hide U2 in p

ε
=⇒hide U2 in p1 ∧ p1

δ−→ p1 ∧ p1
ρ

=⇒ p′

⇒ (∗ Proposition A.2.2.4 ∗)
∃p1 : hide U2 in p

ε
=⇒hide U2 in p1

∧hide U2 in p1
δ−→hide U2 in p1 ∧ p1

ρ
=⇒ p′

⇒ (∗ induction ∗)
∃p1 : hide U2 in p

ε
=⇒hide U2 in p1

∧hide U2 in p1
δ−→hide U2 in p1

∧hide U2 in p1
ρ\U2====⇒hide U2 in p′

⇒ (∗ definition of
δ·(ρ\U2)

======⇒ ∗)
hide U2 in p

δ·(ρ\U2)
======⇒hide U2 in p′

⇒ (∗ Definition A.2.1 ∗)
hide U2 in p

(δ·ρ)\U2======⇒hide U2 in p′

⇒ (∗ σ = δ·ρ ∗)
hide U2 in p

σ\U2====⇒hide U2 in p′

141

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

2. By induction on the structure of σ (Note that σ ∈ (I ∪ U1 ∪ {δ})∗):
σ = ε:

The proposition reduces to:

hide U2 in p
ε

=⇒ q ⇒ ∃p′, ∃σ′ ∈ L∗δ :
p

σ′
==⇒ p′ ∧ q = hide U2 in p′ ∧ ε = σ′\U2

(A.4)
which, using the definition of

ε
=⇒ , is rewritten to:

hide U2 in p τn−−→ q ⇒ ∃p′, ∃σ′ ∈ L∗δ :
p

σ′
==⇒ p′ ∧ q = hide U2 in p′ ∧ ε = σ′\U2

(A.5)
which is proved by induction on n:
n = 0:

hide U2 in p τn−−→ q

⇒ (∗ n = 0 and from definition of
ε

=⇒ : p τ0−−→ p′ ⇔ p = p′ ∗)
∃p′ = p, ∃σ′ = ε : p

σ′
==⇒ p′ ∧ q = hide U2 in p′ ∧ ε = σ′\U2

n = n′ + 1:
hide U2 in p τn−−→ q

⇒ (∗ n = n′ + 1 and definition of τn−−→ ∗)
∃q1 : hide U2 in p τ−→ q1 ∧ q1

τn
′

−−→ q
⇒ (∗ Proposition A.2.2.6 ∗)
∃q1 : (∃p1 : (p τ−→ p1 ∨∃a ∈ U2 : p a−→ p1)

∧ q1 = hide U2 in p1) ∧ q1
τn
′

−−→ q
⇒ (∗ substitution ∗)
∃p1 : (p τ−→ p1 ∨∃a ∈ U2 : p a−→ p1)∧hide U2 in p1

τn
′

−−→ q
⇒ (∗ induction on equation (A.5) ∗)
∃p1 : (p τ−→ p1 ∨∃a ∈ U2 : p a−→ p1)
∧ (∃p2, ∃σ1 ∈ L∗δ :
p1

σ1==⇒ p2 ∧ q = hide U2 in p2 ∧ ε = σ1\U2)
⇒ (∗ logical manipulation ∗)

(∃p1, p2, ∃σ1 ∈ L∗δ :
p τ−→ p1 ∧ p1

σ1==⇒ p2 ∧ q = hide U2 in p2 ∧ ε = σ1\U2)
∨ (∃p1, p2, ∃σ1 ∈ L∗δ , ∃a ∈ U2 :
p a−→ p1 ∧ p1

σ1==⇒ p2 ∧ q = hide U2 in p2 ∧ ε = σ1\U2)
⇒ (∗ Definition of =⇒ ∗)

(∃p′ = p2, σ
′ = σ1 : p

σ′
==⇒ p′ ∧ q = hide U2 in p′ ∧ ε = σ′\U2)

∨ (∃p′ = p2, σ
′ = a·σ1 : p

σ′
==⇒ p′ ∧ q = hide U2 in p′ ∧ ε = σ′\U2)

142

A.2. Proofs of Section 3.3.2: Hiding

σ = a·ρ, with a ∈ I ∪ U1:
hide U2 in p

σ
=⇒ q

⇒ (∗ σ = a·ρ ∗)
hide U2 in p

a·ρ
==⇒ q

⇒ (∗ definition of
a·ρ

==⇒ ∗)
∃q1, q2 : hide U2 in p

ε
=⇒ q1 ∧ q1

a−→ q2 ∧ q2
ρ

=⇒ q
⇒ (∗ equation (A.4) ∗)
∃q1, q2 : (∃p1, ∃σ1 ∈ L∗δ :
p

σ1==⇒ p1 ∧ q1 = hide U2 in p1 ∧ ε = σ1\U2)
∧ q1

a−→ q2 ∧ q2
ρ

=⇒ q
⇒ (∗ substitution ∗)
∃q2, p1, ∃σ1 ∈ L∗δ :
p

σ1==⇒ p1 ∧ ε = σ1\U2 ∧hide U2 in p1
a−→ q2 ∧ q2

ρ
=⇒ q

⇒ (∗ Proposition A.2.2.5 ∗)
∃q2, p1, ∃σ1 ∈ L∗δ :
p

σ1==⇒ p1 ∧ ε = σ1\U2

∧ (∃p2 : p1
a−→ p2 ∧ q2 = hide U2 in p2) ∧ q2

ρ
=⇒ q

⇒ (∗ substitution ∗)
∃p1, p2, ∃σ1 ∈ L∗δ :
p

σ1==⇒ p1 ∧ ε = σ1\U2 ∧ p1
a−→ p2 ∧hide U2 in p2

ρ
=⇒ q

⇒ (∗ induction ∗)
∃p1, p2, ∃σ1 ∈ L∗δ :
p

σ1==⇒ p1 ∧ ε = σ1\U2 ∧ p1
a−→ p2

∧ (∃p3, ∃σ3 ∈ L∗δ :
p2

σ3==⇒ p3 ∧ q = hide U2 in p3 ∧ ρ = σ3\U2)
⇒ (∗ logical manipulation ∗)
∃p1, p2, p3, ∃σ1, σ3 ∈ L∗δ :
p

σ1==⇒ p1 ∧ p1
a−→ p2 ∧ p2

σ3==⇒ p3

∧ q = hide U2 in p3 ∧ ε = σ1\U2 ∧ ρ = σ3\U2

⇒ (∗ (σ1·a·σ3)\U2 = (σ1\U2)·(a\U2)·(σ3\U2) = ε·a·ρ = σ ∗)
∃p′ = p3, σ

′ = σ1·a·σ3 :
p

σ′
==⇒ p′ ∧ q = hide U2 in p′ ∧σ = σ′\U2

143

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

σ = δ·ρ:
hide U2 in p

σ
=⇒ q

⇒ (∗ σ = δ·ρ ∗)
hide U2 in p

δ·ρ
==⇒ q

⇒ (∗ definition of
δ·ρ

==⇒ ∗)
∃q1, q2 : hide U2 in p

ε
=⇒ q1 ∧ q1

δ−→ q2 ∧ q2
ρ

=⇒ q
⇒ (∗ equation (A.4) ∗)
∃q1, q2 : (∃p1, ∃σ1 ∈ L∗δ :
p

σ1==⇒ p1 ∧ q1 = hide U2 in p1 ∧ ε = σ1\U2)

∧ q1
δ−→ q2 ∧ q2

ρ
=⇒ q

⇒ (∗ substitution ∗)
∃q2, p1, ∃σ1 ∈ L∗δ :

p
σ1==⇒ p1 ∧ ε = σ1\U2 ∧hide U2 in p1

δ−→ q2 ∧ q2
ρ

=⇒ q
⇒ (∗ Proposition A.2.2.7 ∗)
∃q2, p1, ∃σ1 ∈ L∗δ :

p
σ1==⇒ p1 ∧ ε = σ1\U2 ∧ p1

δ−→ p1

∧ q2 = hide U2 in p1 ∧ q2
ρ

=⇒ q
⇒ (∗ substitution ∗)
∃p1, ∃σ1 ∈ L∗δ :

p
σ1==⇒ p1 ∧ ε = σ1\U2 ∧ p1

δ−→ p1 ∧hide U2 in p1
ρ

=⇒ q
⇒ (∗ induction ∗)
∃p1, ∃σ1 ∈ L∗δ :

p
σ1==⇒ p1 ∧ ε = σ1\U2 ∧ p1

δ−→ p1

∧ (∃p3, ∃σ3 ∈ L∗δ :
p1

σ3==⇒ p3 ∧ q = hide U2 in p3 ∧ ρ = σ3\U2)
⇒ (∗ logical manipulation ∗)
∃p1, p3, ∃σ1, σ3 ∈ L∗δ :

p
σ1==⇒ p1 ∧ p1

δ−→ p1 ∧ p1
σ3==⇒ p3

∧ q = hide U2 in p3 ∧ ε = σ1\U2 ∧ ρ = σ3\U2

⇒ (∗ (σ1·δ·σ3)\U2 = (σ1\U2)·(δ\U2)·(σ3\U2) = ε·δ·ρ = σ ∗)
∃p′ = p3, σ

′ = σ1·δ·σ3 :
p

σ′
==⇒ p′ ∧ q = hide U2 in p′ ∧σ = σ′\U2

2

Theorem 3.3.5 If i, s ∈ IOTS(I, U) with U2 ⊆ U , then:

i ioco s ⇒ hide U2 in i ioco hide U2 in s

2

Proof To be proved according to Lemma A.1.3:

Straces(i) ⊆ Straces(s) ⇒ Straces(hide U2 in i) ⊆ Straces(hide U2 in s)

which is straightforward (recall that L = I ∪ U).

144

A.3. Proofs of Section 3.4: Underspecification

δδ

II

U

U

I ∪ U ∪ {δ}

1

2

S

Figure A.1: Automaton that accepts the regular set (U ∪ δ∗I)∗δ∗

σ ∈ Straces(hide U2 in i)
⇒ (∗ Definition Straces ∗)

hide U2 in i
σ

=⇒
⇒ (∗ Proposition A.2.3.2 ∗)
∃σ′ ∈ L∗δ : i

σ′
==⇒ ∧σ = σ′\U2

⇒ (∗ premise ∗)
∃σ′ ∈ L∗δ : s

σ′
==⇒ ∧σ = σ′\U2

⇒ (∗ Proposition A.2.3.1 ∗)
∃σ′ ∈ L∗δ : hide U2 in s

σ′\U2====⇒ ∧σ = σ′\U2

⇒ (∗ substitution ∗)
hide U2 in s

σ
=⇒

⇒ (∗ Definition Straces ∗)
σ ∈ Straces(hide U2 in s)

2

A.3 Proofs of Section 3.4: Underspecification

To improve the readability of the propositions and proofs in this chapter,
we make a notational distinction between transitions of s and Ξ(s). For
transitions of the IOTS Ξ(s), we use the subscript Ξ. For example, we use

q λ−→Ξq
′ to denote (q, λ, q′) ∈ TΞ(s). Likewise we use =⇒Ξ for sequences of

transitions. For transitions and sequences of transitions in s we use the
standard notation without subscript.

Lemma A.3.1 (U ∪ δ∗I)∗δ∗ is suffix-closed, i.e., let σ ∈ (U ∪ δ∗I)∗δ∗.

∀(σ1, σ2 : σ = σ1·σ2) : σ2 ∈ (U ∪ δ∗I)∗δ∗

2

Proof In Figure A.1 we show the automaton that accepts strings in the
regular set (U ∪ δ∗I)∗δ∗. The two accepting states are “S” (the starting
state) and “1”. It is impossible to reach an accepting state from state “2”.

145

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

So after σ1 the automaton is in state “S” or “1”. In “S”, being the start
state, the entire regular set is accepted. In state “1” strings of the following
form are accepted. Both are subsets of (U ∪ δ∗I)∗δ∗.

1. δ∗ ⊆ (U ∪ δ∗I)∗δ∗

2. δ∗I(U ∪ δ∗I)∗δ∗ ⊆ (U ∪ δ∗I)∗δ∗

2

The following proposition expresses that Straces do not have outputs after
delta.

Proposition A.3.2 Let s ∈ LTS(I, U)

Straces(s) ⊆ (U ∪ δ∗I)∗δ∗

2

Proof The complement of (U ∪ δ∗I)∗δ∗ with respect to L∗δ are traces of the
form (U ∪ δ∗I)∗δ∗(δU)L∗δ . It is straightforward to verify that this is really
the complement by interchanging the accepting and non accepting states in
Figure A.1 on the previous page. The result is an automaton that accepts
the complement. So a trace in the complement is a trace that contains the
sequence δ·λ with λ ∈ U . Because of the semantics of quiescence this is of
course an impossible trace for an LTS.
Proof by reductio ad absurdum. Suppose the proposition is not true. Let
σ = σ1·σ2·σ3 ∈ (U ∪ δ∗I)∗δ∗(δU)L∗δ where σ1 ∈ (U ∪ δ∗I)∗δ∗, σ2 ∈ δU, σ3 ∈
L∗δ . Take an arbitrary s with σ ∈ Straces(s), such that s

σ1==⇒ q1
σ2·σ3====⇒

σ ∈ Straces(s)∧ s σ1==⇒ q1
δ−→ q2

⇒ (∗ Definition δ ∗)
σ ∈ Straces(s)∧ s σ1==⇒ q1 ∧∀λ ∈ U : q1

λ−−→/ ∧ q1
τ−−→/ ∧ q1 = q2

⇒ (∗ Definition =⇒ and σ2 ∈ δU ∗)
σ ∈ Straces(s)∧ s σ1==⇒ q1 ∧ q1

σ2===⇒/
⇒ Contradiction

2

Proposition 3.4.5

∀σ ∈ L∗δ , q′ ∈ Qs : s
σ

=⇒ q′ ⇔ Ξ(s)
σ

=⇒Ξq
′

2

Proof The crux of the proof is that Ξ(s) only adds states and transitions
to s, it does not remove them.

Only if: Proof by induction on the structure of σ.

Basic step: σ = ε. We prove the following stronger statement by induction
on n.

∀q, q′ ∈ Qs : q τn−−→ q′ ⇒ q τn−−→Ξq
′ (A.6)

146

A.3. Proofs of Section 3.4: Underspecification

Basic step: n = 0

q τ0−−→ q′

⇒ (∗ q = q′ and q, q′ ∈ QΞ(s) ∗)
q τ0−−→Ξq

′

Induction step: n = n′ + 1. We assume that equation A.6 holds for
n′.

q τn
′ ·τ−−−→ q′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ Qs : q τn

′
−−→ q1 ∧ q1

τ−→ q′

⇒ (∗ Induction ∗)
∃q1 ∈ Qs : q τn

′
−−→Ξq1 ∧ q1

τ−→ q′

⇒ (∗ Definition of Ξ (note that (q1, τ, q
′) ∈ Ts ⊆ TΞ(s)) ∗)

∃q1 ∈ Qs : q τn
′

−−→Ξq1 ∧ q1
τ−→Ξq

′

⇒ (∗ Definition −→ ∗)
q τn

′+1−−−−→Ξq
′

Induction step: σ = σ′·a, where a ∈ Lδ. We assume that the proposition
holds for σ′. We identify two cases:

1. a ∈ L
s

σ′·a
===⇒ q′

⇒ (∗ Definition =⇒ ∗)
∃q1, q2 ∈ Qs : s

σ′
==⇒ q1 ∧ q1

a−→ q2 ∧ q2
ε

=⇒ q′

⇒ (∗ Induction ∗)
∃q1, q2 ∈ Qs : Ξ(s)

σ′
==⇒Ξq1 ∧ q1

a−→ q2 ∧ q2
ε

=⇒ q′

⇒ (∗ Definition of Ξ(s) (note that (q1, a, q2) ∈ Ts ⊆ TΞ(s)) ∗)
∃q1, q2 ∈ Qs : Ξ(s)

σ′
==⇒Ξq1 ∧ q1

a−→Ξq2 ∧ q2
ε

=⇒ q′

⇒ (∗ Equation A.6 ∗)
∃q1, q2 ∈ Qs : Ξ(s)

σ′
==⇒Ξq1 ∧ q1

a−→Ξq2 ∧ q2
ε

=⇒Ξq
′

⇒ (∗ Definition =⇒ ∗)
Ξ(s)

σ′·a
===⇒Ξq

′

147

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

2. a = δ

s
σ′·δ

===⇒ q′

⇒ (∗ Definition =⇒ ∗)
∃q1, q2 ∈ Qs : s

σ′
==⇒ q1 ∧ q1

δ−→ q2 ∧ q2
ε

=⇒ q′

⇒ (∗ Definition δ (q1 = q2 = q′) ∗)
s

σ′
==⇒ q′ ∧∀λ ∈ Uτ : q′ λ−−→/

⇒ (∗ Induction, note that q′ ∈ Qs ∗)
Ξ(s)

σ′
==⇒Ξq

′ ∧∀λ ∈ Uτ : q′ λ−−→/
⇒ (∗ Definition Ξ, note that λ 6∈ I and q′ ∈ Qs ∗)

Ξ(s)
σ′

==⇒Ξq
′ ∧∀λ ∈ Uτ : q′ λ−−→/ Ξ

⇒ (∗ Definition δ ∗)
Ξ(s)

σ′
==⇒Ξq

′ ∧ q′ δ−→Ξq
′

⇒ (∗ Definition =⇒ ∗)
Ξ(s)

σ′·δ
===⇒Ξq

′

if: Proof by induction on the structure of σ.

Basic step: σ = ε We prove the following stronger statement

∀q ∈ QΞ(s), q
′ ∈ Qs : q τn−−→Ξq

′ ⇒ q τn−−→ q′ (A.7)

which is proven by induction on n:

Basic step: n = 0

q τ0−−→Ξq
′

⇒ (∗ q = q′ and q′ ∈ Qs ∗)
q τ0−−→ q′

Induction step: n = n′ + 1. We assume that equation A.7 holds for
n′.

q τn
′+1−−−−→Ξq

′

⇒ (∗ Definition −→ ∗)
∃q1 ∈ QΞ(s) : q τn

′
−−→Ξq1 ∧ q1

τ−→Ξq
′

⇒ (∗ Definition Ξ, note that q′ ∈ Qs ∗)
∃q1 ∈ Qs : q τn

′
−−→Ξq1 ∧ q1

τ−→ q′

⇒ (∗ Induction ∗)
∃q1 ∈ Qs : q τn

′
−−→ q1 ∧ q1

τ−→ q′

⇒ (∗ Definition −→ ∗)
q τn

′+1−−−−→ q′

Induction step: σ = σ′ ·a, where a ∈ Lδ. We assume that the proposition
holds for σ′. We identify two cases:

148

A.3. Proofs of Section 3.4: Underspecification

1. a ∈ L
Ξ(s)

σ′·a
===⇒Ξq

′

⇒ (∗ Definition =⇒ ∗)
∃q1, q2 ∈ QΞ(s) : Ξ(s)

σ′
==⇒Ξq1 ∧ q1

a−→Ξq2 ∧ q2
ε

=⇒Ξq
′

⇒ (∗ Equation A.7, note that q′ ∈ Qs ∗)
∃q1 ∈ QΞ(s), q2 ∈ Qs : Ξ(s)

σ′
==⇒Ξq1 ∧ q1

a−→Ξq2 ∧ q2
ε

=⇒ q′

⇒ (∗ Definition Ξ, note that q2 ∈ Qs ∗)
∃q1, q2 ∈ Qs : Ξ(s)

σ′
==⇒Ξq1 ∧ q1

a−→ q2 ∧ q2
ε

=⇒ q′

⇒ (∗ Induction ∗)
∃q1, q2 ∈ Qs : s

σ′
==⇒ q1 ∧ q1

a−→ q2 ∧ q2
ε

=⇒ q′

⇒ (∗ Definition =⇒ ∗)
s

σ′·a
===⇒ q′

2. a = δ
Ξ(s)

σ′·δ
===⇒Ξq

′

⇒ (∗ Definition =⇒ ∗)
∃q1, q2 ∈ QΞ(s) : s

σ′
==⇒Ξq1 ∧ q1

δ−→Ξq2 ∧ q2
ε

=⇒Ξq
′

⇒ (∗ Definition of δ (q1 = q2 = q′) ∗)
Ξ(s)

σ′
==⇒Ξq

′ ∧∀λ ∈ Uτ : q′ λ−−→/ Ξ

⇒ (∗ Induction ∗)
s

σ′
==⇒ q′ ∧∀λ ∈ Uτ : q′ λ−−→/ Ξ

⇒ (∗ Ts ⊆ TΞ(s) ∗)
s

σ′
==⇒ q′ ∧∀λ ∈ Uτ : q′ λ−−→/

⇒ (∗ Definition δ ∗)
s

σ′
==⇒ q′ ∧ q′ δ−→ q′

⇒ (∗ Definition of =⇒ ∗)
s

σ′·δ
===⇒ q′

2

Lemma A.3.3 Let qχ be the chaotic state in a demonically completed LTS:

∀σ ∈ (U ∪ δ∗I)∗ : qχ
σ

=⇒Ξqχ

2

Proof Proof by induction on the structure of σ.

Basic step σ = ε:

Always by definition: qχ
τ0−−→Ξqχ

Induction step : Suppose the lemma holds for σ′. We prove that it holds
for σ ∈ σ′·(U ∪ δ∗I).

149

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

1. σ = σ′·λ where λ ∈ U
qχ

σ′
==⇒Ξqχ

⇒ (∗ definition Ξ : ∀λ ∈ U : qχ
τ−→ΞqΩ

λ−→Ξqχ ∗)
qχ

σ′
==⇒Ξqχ

λ
=⇒Ξqχ

⇒ (∗ Definition =⇒ ∗)
qχ

σ′·λ
===⇒Ξqχ

⇒ (∗ σ = σ′·λ ∗)
qχ

σ
=⇒Ξqχ

2. σ ∈ σ′·δ∗·λ where λ ∈ I
qχ

σ′
==⇒Ξqχ

⇒ (∗ definition Ξ : ∀λ ∈ I : qχ
τ−→Ξq∆

δ∗−−→Ξq∆
λ−→Ξqχ ∗)

qχ
σ′

==⇒Ξqχ
δ∗·λ

===⇒Ξqχ
⇒ (∗ Definition =⇒ ∗)

qχ
σ′·δ∗·λ

=====⇒Ξqχ
⇒ (∗ σ ∈ σ′·δ∗·λ ∗)

qχ
σ

=⇒Ξqχ

2

Proposition A.3.4 Let qχ be the chaotic state in a demonically completed
LTS:

∀q′ ∈ QΞ(s), σ ∈ (U ∪ δ∗I)∗δ∗ : qχ
σ

=⇒Ξq
′ ⇒ q′ 6∈ Qs

2

Proof From Lemma A.3.3 we already know that the lemma holds for traces
in the regular set (U ∪ δ∗I)∗. Now we have to prove that the lemma holds
if traces of this form end with δ∗. Let σ ∈ (U ∪ δ∗I)∗

σ ∈ (U ∪ δ∗I)∗

⇒ (∗ Lemma A.3.3 ∗)
qχ

σ
=⇒Ξqχ

⇒ (∗ Definition Ξ ∗)
qχ

σ
=⇒Ξqχ

τ−→Ξq∆
δ∗−−→Ξq∆

⇒ (∗ Definition =⇒ ∗)
qχ

σ·δ∗
===⇒Ξq∆

2

We delay the proof of Theorem 3.4.6 until after Theorem 3.4.10.

Proposition A.3.5 Let s ∈ LTS(I, U).

Utraces(s) = {σ ∈ Straces(s) | (Ξ(s) after σ) ⊆ Qs}

2

150

A.3. Proofs of Section 3.4: Underspecification

Proof We prove the proposition in two steps:

1. Utraces(s) ⊆ {σ ∈ Straces(s) | (Ξ(s) after σ) ⊆ Qs}

We will prove this equation by reductio ad absurdum. Suppose the
above proposition does not hold, then there exists a σ such that the
following holds:
σ ∈ Utraces(s)∧ (σ 6∈ Straces(s)∨ (Ξ(s) after σ) 6⊆ Qs)
There are two possibilities:

(a) σ ∈ Utraces(s)∧σ 6∈ Straces(s). We prove that this gives rise to
a contradiction.

σ ∈ Utraces(s)∧σ 6∈ Straces(s)
⇒ (∗ Definition Straces ∗)

σ ∈ Utraces(s)∧ (σ 6∈ L∗δ ∨ s
σ

==⇒/)
⇒ (∗ Definition Utraces ∗)

σ ∈ L∗δ ∧ s
σ

=⇒ ∧ (σ 6∈ L∗δ ∨ s
σ

==⇒/)
⇒ Contradiction

(b) σ ∈ Utraces(s)∧ (Ξ(s) after σ) 6⊆ Qs. We prove that this gives
also rise to a contradiction.

σ ∈ Utraces(s)∧ (Ξ(s) after σ) 6⊆ Qs
⇒ (∗ Definition after ∗)

σ ∈ Utraces(s)∧{q | Ξ(s)
σ

=⇒Ξq} 6⊆ Qs
⇒ (∗ Set definition ∗)

σ ∈ Utraces(s)∧∃q 6∈ Qs : Ξ(s)
σ

=⇒Ξq
⇒ (∗ Definition Ξ, take the first time that Ξ(s) enters a state

not in Qs. This is always via an input action. ∗)
σ ∈ Utraces(s)∧∃q 6∈ Qs, q′ ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I :

σ1·λ·σ2 = σ ∧Ξ(s)
σ1==⇒Ξq

′ ∧ q′ λ−→Ξqχ
σ2==⇒Ξq

⇒ (∗ Proposition 3.4.5 ∗)
σ ∈ Utraces(s)∧∃q′ ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I : σ1·λ·σ2 = σ

∧ s σ1==⇒ q′ ∧ q′ λ−→Ξqχ
⇒ (∗ Definition Ξ ∗)

σ ∈ Utraces(s)∧∃q′ ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I : σ1·λ·σ2 = σ

∧ s σ1==⇒ q′ ∧ q′ λ−−→/ ∧ q′ τ−−→/
⇒ (∗ Definition

λ
=⇒ ∗)

σ ∈ Utraces(s)∧∃q′ ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I : σ1·λ·σ2 = σ

∧ s σ1==⇒ q′ ∧ q′ λ
==⇒/

⇒ (∗ Definition Utraces ∗)
(σ ∈ L∗δ ∧ s

σ
=⇒ ∧ @q′ ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I : σ1·λ·σ2 = σ

∧ s σ1==⇒ q′ ∧ q′ λ
==⇒/)

∧ (∃q′ ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I : σ1·λ·σ2 = σ ∧ s σ1==⇒ q′ ∧ q′ λ
==⇒/)

⇒ Contradiction

151

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

2. Utraces(s) ⊇ {σ ∈ Straces(s) | (Ξ(s) after σ) ⊆ Qs}.

We will prove this equation by reductio ad absurdum. Suppose that
the above proposition does not hold, then the following holds: There
exists a trace σ such that

σ ∈ Straces(s)∧Ξ(s) after σ ⊆ Qs ∧σ 6∈ Utraces(s)
⇒ (∗ Definition Utraces ∗)

σ ∈ Straces(s)∧Ξ(s) after σ ⊆ Qs ∧ (σ 6∈ L∗δ ∨ s
σ

==⇒/
∨∃(q1, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ ∧ s σ1==⇒ q1 ∧ q1

λ
==⇒/)

⇒ (∗ Definition Straces ∗)
σ ∈ L∗δ ∧ s

σ
=⇒ ∧Ξ(s) after σ ⊆ Qs ∧ (σ 6∈ L∗δ ∨ s

σ
==⇒/

∨∃(q1 ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ ∧ s σ1==⇒ q1 ∧ q1
λ

==⇒/)

There are three possibilities in the last conjunct:

(a) σ 6∈ L∗δ
⇒ Contradiction

(b) s
σ

==⇒/
⇒ Contradiction

(c) ∃(q1 ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ ∧ s σ1==⇒ q1 ∧ q1
λ

==⇒/
⇒ (∗ s is strongly converging ∗)

σ ∈ L∗δ ∧ s
σ

=⇒ ∧Ξ(s) after σ ⊆ Qs
∧∃(q1, q2 ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ ∧ s σ1==⇒ q1

∧ q1
ε

=⇒ q2 ∧ q2
λ−−→/ ∧ q2

τ−−→/
⇒ (∗ Definition

σ1==⇒ ∗)
Ξ(s) after σ ⊆ Qs
∧∃(q2 ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ ∧ s σ1==⇒ q2

∧ q2
λ−−→/ ∧ q2

τ−−→/
⇒ (∗ Proposition 3.4.5 ∗)

Ξ(s) after σ ⊆ Qs ∧∃(q2 ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ

∧Ξ(s)
σ1==⇒Ξq2 ∧ q2

λ−−→/ ∧ q2
τ−−→/

⇒ (∗ Definition Ξ ∗)
Ξ(s) after σ ⊆ Qs ∧∃(q2 ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ

∧Ξ(s)
σ1==⇒Ξq2 ∧ q2

λ−→Ξqχ
⇒ (∗ Proposition A.3.2 (σ ∈ Straces(s)) ∗)

Ξ(s) after σ ⊆ Qs ∧σ ∈ (U ∪ δ∗I)∗δ∗

∧∃(q2 ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ ∧Ξ(s)
σ1==⇒Ξq2

∧ q2
λ−→Ξqχ

⇒ (∗ Lemma A.3.1 ∗)
Ξ(s) after σ ⊆ Qs ∧σ ∈ (U ∪ δ∗I)∗δ∗

∧∃(q2 ∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) : σ1·λ·σ2 = σ ∧σ2 ∈ (U ∪ δ∗I)∗δ∗

∧Ξ(s)
σ1==⇒Ξq2 ∧ q2

λ−→Ξqχ

152

A.3. Proofs of Section 3.4: Underspecification

⇒ (∗ Proposition A.3.4 ∗)
Ξ(s) after σ ⊆ Qs ∧∃(q 6∈ Qs, σ1, σ2 ∈ L∗δ , λ ∈ I) :

σ1·λ·σ2 = σ ∧Ξ(s)
σ1==⇒Ξq2

λ−→Ξqχ
σ2==⇒ q

⇒ (∗ Definition ⊆ ∗)
Ξ(s) after σ ⊆ Qs ∧{q | Ξ(s)

σ
=⇒ q} 6⊆ Qs

⇒ (∗ Definition after ∗)
Ξ(s) after σ ⊆ Qs ∧Ξ(s) after σ 6⊆ Qs

⇒ Contradiction

2

Lemma A.3.6 ∀σ ∈ Utraces(s) : out(s after σ) = out(Ξ(s) after σ) 2

Proof

⊆: We prove x ∈ out(s after σ)⇒ x ∈ out(Ξ(s) after σ).

x ∈ out(s after σ)
⇒ (∗ Definitions out and after ∗)
∃q ∈ Qs : s

σ·x
==⇒ q

⇒ (∗ Proposition 3.4.5 ∗)
∃q ∈ Qs : Ξ(s)

σ·x
==⇒Ξq

⇒ (∗ Definitions out and after ∗)
x ∈ out(Ξ(s) after σ)

⊇: We prove x ∈ out(Ξ(s) after σ)⇒ x ∈ out(s after σ).

x ∈ out(Ξ(s) after σ)
⇒ (∗ Definition out and after ∗)
∃q′ ∈ QΞ(s) : Ξ(s)

σ·x
==⇒Ξq

′

⇒ (∗ Definition =⇒ ∗)
∃q, q′ ∈ QΞ(s) : Ξ(s)

σ
=⇒Ξq

x
=⇒Ξq

′

⇒ (∗ Proposition A.3.5, premise σ ∈ Utraces(s) ∗)
∃q ∈ Qs, q′ ∈ QΞ(s) : Ξ(s)

σ
=⇒Ξq

x
=⇒Ξq

′

⇒ (∗ Definition 3.4.3: Ξ only adds transitions for input actions ∗)
∃q, q′ ∈ Qs : Ξ(s)

σ
=⇒Ξq

x
=⇒Ξq

′

⇒ (∗ Proposition 3.4.5 ∗)
∃q, q′ ∈ Qs : s

σ
=⇒ q

x
=⇒ q′

⇒ (∗ Definitions out and after ∗)
x ∈ out(s after σ)

2

Lemma A.3.7 ∀s ∈ LTS(I, U) : Utraces(s) ⊆ Straces(Ξ(s))

2

153

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

Proof
σ ∈ Utraces(s)

⇒ (∗ Definition Utraces ∗)
∃q′ : s σ

=⇒ q′

⇒ (∗ Proposition 3.4.5 ∗)
∃q′ ∈ Qs : Ξ(s)

σ
=⇒Ξq

′

⇒ (∗ Definition Straces ∗)
σ ∈ Straces(Ξ(s))

2

Proposition A.3.8 σ ∈ Straces(Ξ(s))\Utraces(s) ⇒ out(Ξ(s) after σ) =
Uδ 2

Proof Let σ ∈ Straces(Ξ(s))\Utraces(s)
∃q ∈ QΞ(s) : Ξ(s)

σ
=⇒Ξq

⇒ (∗ Proposition A.3.5 ∗)
∃q ∈ QΞ(s)\Qs : Ξ(s)

σ
=⇒Ξq

⇒ (∗ Definition 3.4.3, we are in the demonic process ∗)
∃q ∈ {qχ, q∆, qΩ} : Ξ(s)

σ
=⇒Ξ

⇒ (∗ Definition out and after ∗)
out(Xi(s) after σ) = Uδ

Rationale: q∆ can do output δ, qΩ can do all outputs in U , and qχ can
do outputs in Uδ.

2

Theorem 3.4.10

uioco = ioco ◦ Ξ

2

Proof Let i ∈ IOTS(I, U), s ∈ LTS(I, U) To make the proof easier to read
we first expand the uioco and ioco ◦ Ξ definitions:
∀σ ∈ Utraces(s) : out(i after σ) ⊆ out(s after σ)
⇔ ∀σ ∈ Straces(Ξ(s)) : out(i after σ) ⊆ out(Ξ(s) after σ)

only if: Take σ ∈ Straces(Ξ(s)) arbitrary. There are two possibilities:

1. σ ∈ Straces(Ξ(s)) ∩ Utraces(s)
σ ∈ Utraces(s)∧ out(i after σ) ⊆ out(s after σ)

⇒ (∗ Lemma A.3.6 ∗)
σ ∈ Utraces(s)∧ out(i after σ) ⊆ out(Ξ(s) after σ)

2. σ ∈ Straces(Ξ(s))\Utraces(s)

⇒ (∗ Proposition A.3.8 ∗)
out(Ξ(s) after σ) = Uδ

⇒ (∗ Logical reasoning ∗)
out(i after σ) ⊆ out(Ξ(s) after σ)

154

A.4. Proofs of Section 3.4.3: New parallel composition operator

if:

∀σ ∈ Straces(Ξ(s)) : out(i after σ) ⊆ out(Ξ(s) after σ)
⇒ (∗ Lemma A.3.7 ∗)
∀σ ∈ Utraces(s) : out(i after σ) ⊆ out(Ξ(s) after σ)

⇒ (∗ Lemma A.3.6 ∗)
∀σ ∈ Utraces(s) : out(i after σ) ⊆ out(s after σ)

2

Theorem 3.4.6 Let i ∈ IOTS(I, U), s ∈ LTS(I, U) then

i ioco s⇒ i(ioco ◦ Ξ)s

Proof This theorem follows from Theorem 3.4.10. 2

A.4 Proofs of Section 3.4.3: New parallel compo-
sition operator

In the proofs we use the notation r][s in two ways. One is to refer to the
parallel composition of the transition systems r and s. The other is to refer
to the state tuple (r, s) ∈ Qr][s. In the latter case r and s refer to states
in Qr and Qs. Throughout the proofs, when we compose two systems, say
r ∈ LTS(Ir, Ur) and s ∈ LTS(Is, Us), these systems have the following
signature, unless stated otherwise: Ir ∩ Is = Ur ∩ Us = ∅.

For a transition system s, we denote its corresponding chaotic transition
system as χ(s). This means that it is a chaotic process with the label-set
of s. We may refer to the states of the chaotic process as χ(s), ∆(s) and
Ω(s). Normally it is clear from the context whether we are referring to a
chaotic transition system or to its states. We use the notation Qχ to refer
to {χ,∆,Ω}, or Qχ(s) if it is not directly clear which label-sets are involved.

Before we prove Theorem 3.4.11 we define some lemmas to describe
the characteristics of traces in parallelly composed systems. The following
lemma describes the characteristics of the new parallel composition operator
for single actions.

Lemma A.4.1 Let r ∈ LTS(Ir, Ur), s ∈ LTS(Is, Us).

1. ∀a ∈ Lr \ Ls : r][s a−→ q ⇔ ∃r′ ∈ Qr : r a−→ r′ ∧ q = r′][s

2. ∀a ∈ Ls \ Lr : r][s a−→ q ⇔ ∃s′ ∈ Qs : s a−→ s′ ∧ q = r][s′

3. r][s τ−→ q ⇔
(∃r′ ∈ Qr : r τ−→ r′ ∧ q = r′][s)∨ (∃s′ ∈ Qs : s τ−→ s′ ∧ q = r][s′)

4. ∀x ∈ (Ur ∩ Is) : r][s x−→ q ⇔
(∃r′ ∈ Qr : r x−→ r′ ∧ s x−−→/ ∧ s τ−−→/ ∧ q = r′][χ(s))
∨ (∃r′ ∈ Qr, s′ ∈ Qs : r x−→ r′ ∧ s x−→ s′ ∧ q = r′][s′)

155

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

5. ∀x ∈ (Ir ∩ Us) : r][s x−→ q ⇔
(r x−−→/ ∧ r τ−−→/ ∧∃s′ ∈ Qs : s x−→ s′ ∧ q = χ(r)][s′)
∨ (∃r′ ∈ Qr, s′ ∈ Qs : r x−→ r′ ∧ s x−→ s′ ∧ q = r′][s′)

6. r][s δ−→ q ⇔ r δ−→ r∧ s δ−→ s∧ q = r][s

2

Proof

1. Let a ∈ Lr \ Ls

Only if:

r][s a−→ q
⇒ (∗ definition][case 1 ∗)
∃r′ ∈ Qr : r a−→ r′ ∧ q = r′][s

If:
∃r′ ∈ Qr : r a−→ r′ ∧ q = r′][s

⇒ (∗ definition][case 1 ∗)
r][s a−→ q

2. Symmetrical to 1

3. Analogous to 1

4. The definition of][, cases 3 and 5, gives the following options:

(a) s x−−→/ ∧ s τ−−→/ ,

(b) ∃r′ ∈ Qr, s′ ∈ Qs : r x−→ r′ ∧ s x−→ s′.

We start with the first: s x−−→/ ∧ s τ−−→/

Only if:

r][s x−→ q
⇒ (∗ premise: s x−−→/ ∧ s τ−−→/ ∗)
∃r′ ∈ Qr : r x−→ r′ ∧ s x−−→/

⇒ (∗ Definition][case 3 ∗)
∃r′ ∈ Qr : r x−→ r′ ∧ s x−−→/ ∧ s τ−−→/ ∧ q = r′][χ(s)

The second case is analogous to the previous case. Note that with
this case there may be some confusion about to which system the
states r and s belong: it may be the non-chaotic system or the
chaotic system. For the proof it does not matter: if r ∈ Qr or
r ∈ Qχ(r); if it is in Qr we perform transitions from system r and
if it is in Qχ(r) we perform transitions from χ(r).

156

A.4. Proofs of Section 3.4.3: New parallel composition operator

If: We continue with the first case.

∃r′ ∈ Qr : r x−→ r′ ∧ s x−−→/ ∧ s τ−−→/ ∧ q = r′][χ(s)
⇒ (∗ Definition][case 3 ∗)

r][s x−→ r′][χ(s)∧ q = r′][χ(s)
⇒ (∗ Logical reasoning ∗)

r][s x−→ q

The second case is analogous to the first case.

5. This case is symmetrical to the previous case.

6. a = δ. A state is quiescent if it cannot perform an output action. For
a parallel composition this means that none of the components can
perform an output action.

Only if:

r][s δ−→ q
⇒ (∗ Definition δ ∗)
∀µ ∈ Ur][s ∪ {τ} : r][s µ−−→/

Based on the definition of r][s we identify the following output
actions (Ur][s = Ur ∪ Us):

• x ∈ Ur\Ls
• x ∈ Us\Lr
• x ∈ Ur ∩ Is
• x ∈ Us ∩ Ir

The parallel composition cannot do any of these actions, this
means that the individual components also cannot do any of these
actions.

⇒ (∗ Definition][, all cases ∗)
∀µ ∈ (Ur\Ls) ∪ {τ} : r µ−−→/
∧∀µ ∈ (Us\Lr) ∪ {τ} : s µ−−→/
∧∀µ ∈ Ur ∩ Is ∪ {τ} : r µ−−→/
∧∀µ ∈ Us ∩ Ir ∪ {τ} : s µ−−→/

⇒ (∗ Logical reasoning. Premise: Ir ∩ Is = Ur ∩ Us = ∅ ∗)
∀µ ∈ Ur ∪ {τ} : r µ−−→/ ∧∀µ ∈ Us ∪ {τ} : s µ−−→/

⇒ (∗ definition δ ∗)
r δ−→ r∧ s δ−→ s∧ q = r][s

157

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

If:

r δ−→ r∧ s δ−→ s∧ q = r][s
⇒ (∗ definition δ ∗)
∀µ ∈ Ur ∪ {τ} : r µ−−→/ ∧∀µ ∈ Us ∪ {τ} : s µ−−→/ ∧ q = r][s

⇒ (∗ definition][, with Ir ∩ Is = Ur ∩ Us = ∅ ∗)
∀µ ∈ Ur ∪ Us ∪ {τ} : r][s µ−−→/ ∧ q = r][s

⇒ (∗ definition δ ∗)
r][s δ−→ r][s∧ q = r][s

⇒ (∗ Logical reasoning (q = r][s) ∗)
r][s δ−→ q

2

In the following lemmas we abstract from τ transitions from composed
systems. We start with the following lemma about empty traces in a parallel
composition.

Lemma A.4.2 Let r, s ∈ LTS

r][s τn−−→ q ⇔ ∃r′ ∈ Qr, s′ ∈ Qs, i, j ≥ 0 : r τ i−−→ r′ ∧ s τ j−−→ s′

∧ q = r′][s′ ∧n = i+ j
2

Proof

Only if: Proof by induction on n.

Basic step: n = 0

r][s τ0−−→ q
⇒ (∗ τ0 means we stay in the same state ∗)

r][s τ0−−→ q ∧ q = r][s
⇒ (∗ τ0 means we stay in the same state ∗)

q = r][s∧ r τ0−−→ r∧ s τ0−−→ s

Induction step: n = m+ 1 and assume that the lemma holds for m.

r][s τm+1−−−−→ q
⇒ (∗ Definition −→ ∗)
∃q1 ∈ Qr][s : r][s τm−−→ q1

τ−→ q

⇒ (∗ Induction ∗)
∃q1 ∈ Qr][s : q1

τ−→ q

∧∃r1 ∈ Qr, s1 ∈ Qs, k, l ≥ 0 : r τk−−→ r1 ∧ s τ l−−→ s1

∧ q1 = r1][s1 ∧m = k + l

158

A.4. Proofs of Section 3.4.3: New parallel composition operator

⇒ (∗ Lemma A.4.1 case 3 ∗)
∃r1 ∈ Qr, s1 ∈ Qs, k, l ≥ 0 : r τk−−→ r1 ∧ s τ l−−→ s1 ∧m = k + l
∧ ((∃r′ ∈ Qr : r1

τ−→ r′ ∧ q = r′][s1)
∨ (∃s′ ∈ Qs : s1

τ−→ s′ ∧ q = r1][s′))
⇒ (∗ Logical reasoning ∗)

((∃r1, r
′ ∈ Qr, s1 ∈ Qs, k, l ≥ 0 : r τk−−→ r1

τ−→ r′ ∧ s τ l−−→ s1)

∨ (∃r1 ∈ Qr, s1, s
′ ∈ Qs, k, l ≥ 0 : r τk−−→ r1 ∧ s τ l−−→ s1

τ−→ s′))
∧m = k + l

⇒ (∗ Definition −→ ∗)
((∃r′ ∈ Qr, s1 ∈ Qs, k, l ≥ 0 : r τk+1−−−→ r′ ∧ s τ l−−→ s1)

∨ (∃r1 ∈ Qr, s′ ∈ Qs, k, l ≥ 0 : r τk−−→ r1 ∧ s τ l+1−−−→ s′))
∧m = k + l

⇒ (∗ Logical reasoning: n = m+ 1 and m = k + l ∗)
∃r′ ∈ Qr, s′ ∈ Qs, i, j ≥ 0 : r τ i−−→ r′ ∧ s τ j−−→ s′ ∧ q = r′][q′

∧n = i+ j

If: Proof by induction on n.

Basic step: n = 0

∃r′ ∈ Qr, s′ ∈ Qs, i, j ≥ 0 : r τ i−−→ r′ ∧ s τ j−−→ s′ ∧ q = r′][s′

∧ i+ j = 0
⇒ (∗ Logical reasoning: i, j ≥ 0∧ i+ j = 0 ∗)
∃r′ ∈ Qr, s′ ∈ Qs, i, j ≥ 0 : r τ0−−→ r′ ∧ s τ0−−→ s′ ∧ q = r′][s′

∧ i+ j = 0
⇒ (∗ Definition τ0 ∗)
∃r′ ∈ Qr, s′ ∈ Qs, i, j ≥ 0 : r τ0−−→ r′ ∧ s τ0−−→ s′ ∧ q = r′][s′

∧ r = r′ ∧ s = s′

⇒ (∗ Definition τ0, q = r][s ∗)
r][s τ0−−→ q

Induction step: n = m+ 1 and assume that the lemma holds for m.

∃r′ ∈ Qr, s′ ∈ Qs, i, j ≥ 0 : r τ i−−→ r′ ∧ s τ j−−→ s′ ∧ q = r′][s′

∧n = i+ j
⇒ (∗ Definition −→ ∗)
∃r′, r1,∈ Qr, s′ ∈ Qs, i, j ≥ 0 : r τ i−1−−−→ r1

τ−→ r′ ∧ s τ j−−→ s′

∧ q = r′][s′ ∧n = i+ j
⇒ (∗ Induction, m = n− 1 = i+ j − 1 ∗)
∃r′, r1 ∈ Qr, s′ ∈ Qs, i, j ≥ 0 : r1

τ−→ r′ ∧ q = r′][s′

∧n = i+ j ∧ r][s τ i+j−1−−−−−→ r1][s′

159

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

⇒ (∗ Lemma A.4.1 case 3 ∗)
∃r′, r1 ∈ Qr, s′ ∈ Qs, i, j ≥ 0 : q = r′][s′ ∧n = i+ j

∧ r][s τ i+j−1−−−−−→ r1][s′ τ−→ r′][s′

⇒ (∗ Logical reasoning ∗)
r][s τn−−→ q

In case i = 0 the above splitting of τ i does not work. In this case
we split τ j ; the proof is symmetrical to the one above.

2

Lemma A.4.3 Let r ∈ LTS(Ir, Ur), s ∈ LTS(Is, Us).

1. ∀a ∈ Lr\Ls : r][s
a

=⇒ q ⇔ ∃r′ ∈ Qr, s′ ∈ Qs : r
a

=⇒ r′ ∧ s ε
=⇒ s′ ∧ q =

r′][s′

2. ∀a ∈ Ls\Lr : r][s
a

=⇒ q ⇔ ∃r′ ∈ Qr, s′ ∈ Qs : r
ε

=⇒ r′ ∧ s a
=⇒ s′ ∧ q =

r′][s′

3. r][s
ε

=⇒ q ⇔ ∃r′ ∈ Qr, s′ ∈ Qs : r
ε

=⇒ r′ ∧ s ε
=⇒ s′ ∧ q = r′][s′

4. ∀x ∈ Ur ∩ Is : r][s
x

=⇒ q ⇔ (∃r′ ∈ Qr, s′ ∈ Qs : r
x

=⇒ r′ ∧ s x
=⇒ s′ ∧ q =

r′][s′)∨ (∃r′ ∈ Qr, s
′ ∈ Qs : r

x
=⇒ r′ ∧ s ε

=⇒ s′ ∧ s′ τ−−→/ ∧ s′ x−−→/ ∧ q ∈
{r′][χ(s)), r′][Ω(s), r′][∆(s)}

5. ∀x ∈ Ir ∩ Us : r][s
x

=⇒ q ⇔ (∃r′ ∈ Qr, s′ ∈ Qs : r
x

=⇒ r′ ∧ s x
=⇒ s′ ∧ q =

r′][s′)∨ (∃r′ ∈ Qr, s
′ ∈ Qs : r

ε
=⇒ r′ ∧ r′ τ−−→/ ∧ r′ x−−→/ ∧ s x

=⇒ s′ ∧ q ∈
{χ(r)][s′,∆(r)][s′,Ω(r)][s′}

6. r][s
δ

=⇒ q ⇔ ∃r′ ∈ Qr, s′ ∈ Qs : r
δ

=⇒ r′ ∧ s δ
=⇒ s′ ∧ q = r′][s′

2

Proof We begin with the proof of case 3, because we can use this result in
the other proofs. Lemma A.4.2 proves a stronger case.

Proof of case 1.

Only if:

r][s
a

=⇒ q
⇒ (∗ Definition =⇒ ∗)
∃q1, q2 ∈ Qr][s : r][s

ε
=⇒ q1

a−→ q2
ε

=⇒ q

⇒ (∗ Lemma A.4.3 case 3 ∗)
∃q1, q2 ∈ Qr][s : q1

a−→ q2
ε

=⇒ q

∧∃r1 ∈ Qr, s1 ∈ Qs : r
ε

=⇒ r1 ∧ s
ε

=⇒ s1 ∧ q1 = r1][s1

160

A.4. Proofs of Section 3.4.3: New parallel composition operator

⇒ (∗ Lemma A.4.1 case 1 ∗)
∃q2 ∈ Qr][s : q2

ε
=⇒ q ∧∃r1, r2 ∈ Qr, s1 ∈ Qs : r

ε
=⇒ r1

a−→ r2

∧ s ε
=⇒ s1 ∧ q2 = r2][s1

⇒ (∗ Lemma A.4.3 case 3 ∗)
∃r1, r2, r

′ ∈ Qr, s1, s
′ ∈ Qs : r

ε
=⇒ r1

a−→ r2
ε

=⇒ r′

∧ s ε
=⇒ s1

ε
=⇒ s′ ∧ q = r′][s′

⇒ (∗ Definition =⇒ ∗)
∃r′ ∈ Qr, s′ ∈ Qs : r

a
=⇒ r′ ∧ s ε

=⇒ s′ ∧ q = r′][s′

If:

r
a

=⇒ r′ ∧ s ε
=⇒ s′

⇒ (∗ Definition =⇒ ∗)
∃r1, r2 ∈ Qr : r

ε
=⇒ r1

a−→ r2
ε

=⇒ r′ ∧ s ε
=⇒ s′

⇒ (∗ Lemma A.4.3 case 3 ∗)
∃r1, r2 ∈ Qr : r1

a−→ r2
ε

=⇒ r′ ∧ r][s ε
=⇒ r1][s′

⇒ (∗ Lemma A.4.1 case 1 ∗)
∃r1, r2 ∈ Qr : r2

ε
=⇒ r′ ∧ r][s ε

=⇒ r1][s′ a−→ r2][s′

⇒ (∗ Lemma A.4.3 case 3 ∗)
∃r1, r2 ∈ Qr : r][s

ε
=⇒ r1][s′ a−→ r2][s′

ε
=⇒ r′][s′

⇒ (∗ Definition =⇒ ∗)
r][s

a
=⇒ r′][s′

Case 2: This case is symmetrical to case 1.

Case 4:

Only if:

r][s
x

=⇒ q
⇒ (∗ Definition =⇒ ∗)
∃q1, q2 ∈ Qr][s : r][s

ε
=⇒ q1

x−→ q2
ε

=⇒ q

⇒ (∗ Lemma A.4.3 case 3 ∗)
∃q1, q2 ∈ Qr][s : q1

x−→ q2
ε

=⇒ q

∧∃r1 ∈ Qr : r
ε

=⇒ r1 ∧∃s1 ∈ Qs : s
ε

=⇒ s1 ∧ q1 = r1][s1

⇒ (∗ Lemma A.4.1, case 4 ∗)
∃q2 ∈ Qr][s : q2

ε
=⇒ q ∧ (∃r1, r2 ∈ Qr, s1, s2 ∈ Qs : r

ε
=⇒ r1

x−→ r2

∧ s ε
=⇒ s1

x−→ s2 ∧ q2 = r2][s2)∨ (∃r1, r2 ∈ Qr, s1 ∈ Qs :
r

ε
=⇒ r1

x−→ r2 ∧ s
ε

=⇒ s1 ∧ s1
x−−→/ ∧ s1

τ−−→/ ∧ q2 = r2][χ(s))
⇒ (∗ Lemma A.4.3 case 3, ∆(s), Ω(s) are reachable

via τ -steps (definition χ(s)) ∗)
(∃r1, r2, r

′ ∈ Qr, s1, s2, s
′ ∈ Qs : r

ε
=⇒ r1

x−→ r2
ε

=⇒ r′

∧ s ε
=⇒ s1

x−→ s2
ε

=⇒ s′ ∧ q = r′][s′)∨ (∃r1, r2 ∈ Qr, s1 ∈ Qs :
r

ε
=⇒ r1

x−→ r2
ε

=⇒ r′ ∧ s ε
=⇒ s1 ∧ s1

x−−→/ ∧ s1
τ−−→/

∧ q ∈ {r′][χ(s)), r′][∆(s), r′][Ω(s)}

161

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

⇒ (∗ Definition =⇒ ∗)
(∃r′ ∈ Qr, s′ ∈ Qs : r

x
=⇒ r′ ∧ s x

=⇒ s′ ∧ q = r′][s′)
∨ (∃r′ ∈ Qr, s′ ∈ Qs : r

x
=⇒ r′ ∧ s ε

=⇒ s′ ∧ s′ x−−→/ ∧ s′ τ−−→/
∧ q ∈ {r′][χ(s)), r′][∆(s), r′][Ω(s)}

If: We split this proof in two parts, one for s
x

=⇒ s′ and one for ∃s′ ∈ Qs :
s

ε
=⇒ s′ ∧ s′ τ−−→/ ∧ s′ x−−→/

r
x

=⇒ r′ ∧ s x
=⇒ s′

⇒ (∗ Definition =⇒ ∗)
∃r1, r2 ∈ Qr : r

ε
=⇒ r1

x−→ r2
ε

=⇒ r
∧∃s1, s2 ∈ Qs : s

ε
=⇒ s1

x−→ s2
ε

=⇒ s′

⇒ (∗ Lemma A.4.3 case 3 ∗)
∃r1, r2 ∈ Qr : r1

x−→ r2
ε

=⇒ r∧∃s1, s2 ∈ Qs : s1
x−→ s2

ε
=⇒ s′

∧ r][s ε
=⇒ r1][s1

⇒ (∗ Lemma A.4.1 case 4 ∗)
∃r1, r2 ∈ Qr : r2

ε
=⇒ r∧∃s1, s2 ∈ Qs : s2

ε
=⇒ s′

∧ r][s ε
=⇒ r1][s1

x−→ r2][s2

⇒ (∗ Lemma A.4.3 case 3 ∗)
∃r1, r2 ∈ Qr, s1, s2 ∈ Qs : r][s

ε
=⇒ r1][s1

x−→ r2][s2
ε

=⇒ r′][s′

⇒ (∗ Definition =⇒ ∗)
r][s

x
=⇒ r′][s′

We continue with the case for ∃s′ : s ε
=⇒ s′ ∧ s′ τ−−→/ ∧ s′ x−−→/ .

r
x

=⇒ r′ ∧∃s1 ∈ Qs : s
ε

=⇒ s1 ∧ s1
τ−−→/ ∧ s1

x−−→/
⇒ (∗ Definition =⇒ ∗)
∃r1, r2 ∈ Qr : r

ε
=⇒ r1

x−→ r2
ε

=⇒ r′

∧∃s1 ∈ Qs : s
ε

=⇒ s1 ∧ s1
x−−→/ ∧ s1

τ−−→/
⇒ (∗ Lemma A.4.3 case 3 ∗)
∃r1, r2 ∈ Qr : r1

x−→ r2
ε

=⇒ r′

∧∃s1 ∈ Qs : s1
x−−→/ ∧ s1

τ−−→/ ∧ r][s ε
=⇒ r1][s1

⇒ (∗ Lemma A.4.1 case 4 ∗)
∃r1, r2 ∈ Qr : r2

ε
=⇒ r′ ∧ r][s ε

=⇒ r1][s1
x−→ r2][χ(s)

⇒ (∗ Lemma A.4.3 case 3, ∆(s),Ω(s) are reachable via τ -steps
(definition χ(s)) ∗)

∃r1, r2 ∈ Qr : r][s
ε

=⇒ r1][s1
x−→ r2][χ(s)

ε
=⇒ q

∧ q ∈ {r′][χ(s), r′][∆(s), r′][Ω(s)}
⇒ (∗ Definition =⇒ ∗)

r][s
x

=⇒ q ∧ q ∈ {r′][χ(s), r′][∆(s), r′][Ω(s)}

Case 5: This case is symmetrical to case 4.

162

A.4. Proofs of Section 3.4.3: New parallel composition operator

Case 6:

Only if:

r][s
δ

=⇒ q
⇒ (∗ Definition =⇒ and definition δ ∗)
∃q ∈ Qr][s : r][s

ε
=⇒ q δ−→ q

⇒ (∗ Lemma A.4.3 case 3 ∗)
∃q ∈ Qr][s : q δ−→ q

∧∃r1 ∈ Qr : r
ε

=⇒ r1 ∧∃s1 ∈ Qs : s
ε

=⇒ s1 ∧ q = r1][s1

⇒ (∗ Lemma A.4.1, case 6 ∗)
∃r1 ∈ Qr : r

ε
=⇒ r1

δ−→ r1

∧∃s1 ∈ Qs : s
ε

=⇒ s1
δ−→ s1 ∧ q = r1][s1

⇒ (∗ Definition =⇒ ∗)
∃r′ ∈ Qr, s′ ∈ Qs : r

δ
=⇒ r′ ∧ s δ

=⇒ s′ ∧ q = r′][s′

If:

r
δ

=⇒ r′ ∧ s δ
=⇒ s′

⇒ (∗ Definition =⇒ and definition δ ∗)
r

ε
=⇒ r′ δ−→ r′ ∧ s ε

=⇒ s′ δ−→ s′

⇒ (∗ Lemma A.4.3 case 3 ∗)
r′ δ−→ r′ ∧ s′ δ−→ s′ ∧ r][s ε

=⇒ r′][s′

⇒ (∗ Lemma A.4.1 case 6 ∗)
r][s

ε
=⇒ r′][s′ δ−→ r′][s′

⇒ (∗ Definition =⇒ ∗)
r][s

δ
=⇒ r′][s′

2

Lemma A.4.4 Let s ∈ LTS.

1. ∀λ ∈ L : χ(s)
λ

=⇒χ(s)

2. χ(s)
δ

=⇒∆(s)

3. ∀a ∈ I : ∆(s) a−→χ(s)

2

Proof All cases follow from the definition of the chaotic transition system.
From χ we arrive at Ω via an internal step and Ω can perform all actions in
L. Likewise for the second case. From χ we arrive via an internal step in ∆,
this state can only perform input actions (case 3) and hence is quiescent. 2

The following lemma’s help with properties about the projection of traces
onto a label set.

163

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

Lemma A.4.5 A and B are label-sets with A ⊆ B. Let σ1 ∈ B∗, σ2 ∈ A∗

(σ1·σ2)�A = (σ1�A)·σ2

2

Proof From Definition 2.3.5 (projection) it is immediately clear that σ2�A =
σ2, because σ2 ∈ A∗. 2

Lemma A.4.6 A and B are label-sets with A ∩ B = ∅. Let σ1 ∈ A∗, σ2 ∈
B∗

(σ1·σ2)�A = σ1�A

2

Proof From Definition 2.3.5 (projection) it is immediately clear that σ2�A =
ε. σ2 = b1 · · · bn for some n ≥ 0 and ∀0 ≤ i ≤ n : bi /∈ A. 2

Lemma A.4.7 A is a label-set. Let σ1, σ2 ∈ A∗

(σ1·σ2)�A = (σ1�A)·(σ2�A)

2

Proof This follows directly from the definition of projection for traces
(Definition 2.3.5). Suppose that σ1 = λ1 · · ·λn, for some n ≥ 0 with λi ∈ A
for 0 ≤ i ≤ n. Likewise suppose that σ2 = µ1 · · ·µm, for some m ≥ 0 with
µi ∈ A for 0 ≤ i ≤ m.

(σ1·σ2)�A
= (∗ Premise σ1 and σ2 ∗)

(λ1 · · ·λn·µ1 · · ·µm)�A
= (∗ Definition 2.3.5 ∗)

λ1�A · · ·λn�A·µ1�A · · ·µm�A
= (∗ Definition 2.3.5 ∗)

(λ1 · · ·λn)�A·(µ1 · · ·µm)�A
= (∗ Premise σ1 and σ2 ∗)

σ1�A·σ2�A
2

Proposition A.4.8 Let r ∈ LTS(Ir, Ur), s ∈ LTS(Is, Us) with σ ∈ (Lr ∪
Ls ∪ {δ})∗

∃s′ ∈ Qs, r′ ∈ Qr : r
σ�Lδr===⇒ r′ ∧ s σ�Lδs===⇒ s′ ⇒ r][s

σ
=⇒ r′][s′

2

164

A.4. Proofs of Section 3.4.3: New parallel composition operator

Proof Proof by induction on the length of σ

Basic step: σ = ε. This case is proven in Lemma A.4.3 case 3.

Induction step: Let σ = σ′·λ. We assume that the lemma holds for σ′.
Based on Lemma A.4.3 we identify the following cases: λ ∈ Lr\Ls,
λ ∈ Ls\Lr, λ ∈ Lr ∩ Ls, λ = δ. We start with λ ∈ Lr\Ls.

r
(σ′·λ)�Lδr======⇒ r′ ∧ s (σ′·λ)�Lδs======⇒ s′

⇒ (∗ Lemma A.4.5 and Lemma A.4.6 (projection) ∗)
r

σ′�Lδr·λ=====⇒ r′ ∧ s σ′�Lδs====⇒ s′

⇒ (∗ Definition =⇒ ∗)
∃r1 ∈ Qr : r

σ′�Lδr====⇒ r1
λ

=⇒ r′ ∧ s σ′�Lδs====⇒ s′

⇒ (∗ Induction ∗)
∃r1 ∈ Qr : r1

λ
=⇒ r′ ∧ r][s σ′

==⇒ r1][s′

⇒ (∗ Lemma A.4.3 case 1 ∗)
∃r1 ∈ Qr : r][s

σ′
==⇒ r1][s′

λ
=⇒ r′][s′

⇒ (∗ Definition =⇒ ∗)
r][s

σ′·λ
===⇒ r′][s′

The case λ ∈ Ls\Lr is symmetrical to the previous one, using Lemma A.4.3
case 2. We continue with the case λ ∈ Lr ∩ Ls.

r
(σ′·λ)�Lδr======⇒ r′ ∧ s (σ′·λ)�Lδs======⇒ s′

⇒ (∗ Lemma A.4.5 (projection) ∗)
s

σ′�Lδs·λ=====⇒ r′ ∧ s σ′�Lδs·λ=====⇒ s′

⇒ (∗ Definition =⇒ ∗)
∃r1 ∈ Qr, s1 ∈ Qs : r

σ′�Lδr====⇒ r1
λ

=⇒ r′ ∧ s σ′�Lδs====⇒ s1
λ

=⇒ s′

⇒ (∗ Induction ∗)
∃r1 ∈ Qr, s1 ∈ Qs : r1

λ
=⇒ r′ ∧ s1

λ
=⇒ s′ ∧ r][s σ′

==⇒ r1][s1

⇒ (∗ Lemma A.4.3 cases 4 and 5 ∗)
∃r1 ∈ Qr, s1 ∈ Qs : r][s

σ′
==⇒ r1][s1

λ
=⇒ r′][s′

⇒ (∗ Definition =⇒ ∗)
r][s

σ′·λ
===⇒ r′][s′

We continue with the case λ = δ: The proof of this case is identical
to the previous one, where the fourth proof step (Lemma A.4.3 cases
4 and 5) is replaced by (Lemma A.4.3 case 6).

2

Lemma A.4.9

∀r ∈ LTS(I, U) : Straces(r) ⊆ Straces(χ(r))

2

165

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

Proof Proof by reductio ad absurdum. Suppose that this lemma does not
hold. This means that there is a state in Qr that can perform an action
λ ∈ Lδ that the state that we reached in Qχ(s) cannot perform. We check
the actions possible in the three states of Qχ(s):

• χ(r). Lemma A.4.4 shows that χ can perform all actions in Lδ.

• Ω(r). Lemma A.4.4 shows that Ω can perform all actions in L. This
means that the only candidate action that Ω cannot do is δ. However
we get to Ω via an internal action from χ (which means that χ is also
reachable) and χ can do all actions in Lδ.

• ∆(r). Lemma A.4.4 shows that ∆ can perform all actions in Iδ. We
get to ∆ via an internal action from χ (which means that χ is also
reachable), this means that we can do all actions in Lδ. ∆ is reached
via a δ transition from χ. What if r can do an output action at this
point? This case leads to a contradiction, because by definition output
actions are not possible after δ.

2

Lemma A.4.10 Let r, s ∈ LTS, σ ∈ (Lr ∪ Ls ∪ {δ})∗.

r
σ�Lδr===⇒ ∧∃t ∈ LTS(Is, Us) : t

σ�Lδs===⇒ ⇒ r][χ(s)
σ

=⇒

2

Proof
⇒ (∗ Lemma A.4.9 ∗)

r
σ�Lδr===⇒ ∧χ(s)

σ�Lδs===⇒
⇒ (∗ Proposition A.4.8 ∗)

r][χ(s)
σ

=⇒
2

The following lemma treats the case when a suspension trace from a
composition of two systems is not a suspension trace of one of the compo-
nents (the projection onto its label set). In this case the culprit is an input
action that the respective component cannot perform.

Lemma A.4.11 Let r, s ∈ LTS, σ·λ ∈ Straces(r][s), σ�Lδs ∈ Straces(s)

σ�Lδr ∈ Straces(r)∧ (σ·λ)�Lδr /∈ Straces(r)⇒ λ ∈ Ir ∩ Us

2

Proof The trace σ·λ is a trace of the composition of r and s. Somehow
the projected trace is not a trace of the component r. This situation is only

166

A.4. Proofs of Section 3.4.3: New parallel composition operator

possible when an unspecified input action causes the composition to make
a transition to a chaotic state.

∀r′ ∈ (r after σ�Lδr) : r′
λ

==⇒/ ∧∃s′ ∈ Qs : s
σ�Lδs===⇒ s′

∧σ�Lδr ∈ Straces(r)
⇒ (∗ Proposition A.4.8 ∗)
∀r′ ∈ (r after σ�Lδr) : r′

λ
==⇒/ ∧ r][s σ

=⇒ r′][s′

We use Lemma A.4.3 to determine the nature of λ.

1. Case 1 is not applicable, because it assumes that r can perform the λ
transition.

2. Case 2 leads to a contradiction. When λ ∈ Ls\Lr, this means that
λ is not a label of r, hence σ�Lδr = σ·λ�Lδr (Lemma A.4.5). However
σ�Lδr ∈ Straces(r), but σ·λ�Lδr /∈ Straces(r).

3. Case 3 is not applicable, because λ is a label.

4. Case 4 is not applicable, because it assumes that r should be able to
perform λ

5. Case 5 is applicable. It shows that the composition can perform λ
even when r cannot perform λ. This implies that that λ ∈ Ir ∩ Us

6. Case 6 is not applicable, because it assumes that r can perform λ.

2

Proposition A.4.12 Let r, s ∈ IOTS

r][s
σ

=⇒ q ⇒ ∃r′ ∈ Qr, s′ ∈ Qs : r
σ�Lδr===⇒ r′ ∧ s σ�Lδs===⇒ s′ ∧ q = r′][s′

2

Proof The parallel operator][is equivalent to the standard parallel operator
for input enabled transition systems like the IOTSs. See Proposition A.1.2
for the proof. 2

Lemma A.4.13 Let r ∈ LTS(Ir, Ur), s ∈ LTS(Is, Us), σ ∈ (Lr ∪ Ls ∪
{δ})∗, a ∈ Is ∩ Ur.

r
σ·a�Lδr=====⇒ r′ ∧ s σ�Lδs===⇒ ∧ s σ·a�Lδs=====⇒/ ⇒ r′][χ(s) ∈ r][s after σ·a

2

167

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

Proof
⇒ (∗ Definition =⇒ ∗)

∃r1 ∈ Qr : r
σ�Lδr===⇒ r1

a�Lδr===⇒ r′ ∧∃s1 ∈ Qs : s
σ�Lδs===⇒ s1

a�Lδs====⇒/
⇒ (∗ Definition =⇒ , not that the transition systems are convergent

and exhibit only a finite number of τ steps ∗)
∃r1 ∈ Qr : r

σ�Lδr===⇒ r1
a�Lδr===⇒ r′ ∧∃s1, s2 ∈ Qs : s

σ�Lδs===⇒ s1
ε

=⇒ s2
a�Lδs,τ−−−−−→/

⇒ (∗ Definition =⇒ ∗)
∃r1 ∈ Qr : r

σ�Lδr===⇒ r1
a�Lδr===⇒ r′ ∧∃s1 ∈ Qs : s

σ�Lδs===⇒ s1
a�Lδs,τ−−−−−→/

⇒ (∗ Proposition A.4.8 (component composition) ∗)
∃r1 ∈ Qr : r1

a�Lδr===⇒ r′ ∧∃s1 ∈ Qs : s1
a�Lδs,τ−−−−−→/ ∧ r][s σ

=⇒ r1][s1

⇒ (∗ Lemma A.4.3 case 4 ∗)
∃r1 ∈ Qr, s1 ∈ Qs, q ∈ {r′][χ(s), r′][∆(s), r′][Ω(s)} :
r][s

σ
=⇒ r1][s1

a
=⇒ q

⇒ (∗ Definition =⇒ ∗)
∃q ∈ {r′][χ(s), r′][∆(s), r′][Ω(s)} : r][s

σ·a
==⇒ q

⇒ (∗ Definition χ(s): ∆(s), Ω(s) are only reachable via χ(s),
together with definition after ∗)

r′][χ(s) ∈ r][s after σ·a
2

Lemma A.4.14 Let σ ∈ Straces(r][s).

σ�Lδr ∈ Straces(r)∧σ�Lδs /∈ Straces(s)

⇒ ∃r′ ∈ Qr, σ1, σ2 : σ = σ1·σ2

∧ r σ1�Lδr====⇒ r′
σ2�Lδr====⇒ ∧ r′][χ(s) ∈ r][s after σ1

2

Proof We split σ into σ1·a·σ2 such that σ1�Lδs is the longest prefix that is
still a suspension trace of s. This means that action a is the first action that
s cannot perform anymore, as a result causing the s component to become
chaotic.

⇒ (∗ We split σ into σ1·a·σ2 ∗)
∃σ1, σ2, a : σ = σ1·a·σ2 ∧σ1�Lδs ∈ Straces(s)∧σ1·a�Lδs /∈ Straces(s)
∧ r σ1·a·σ2�Lδr=======⇒

⇒ (∗ Lemma A.4.11 (input actions trigger chaos) ∗)
∃σ1, σ2, a ∈ Is ∩ Ur : σ = σ1·a·σ2 ∧σ1�Lδs ∈ Straces(s)
∧σ1·a�Lδs /∈ Straces(s)∧ r σ1·a·σ2�Lδr=======⇒

⇒ (∗ Definition =⇒ ∗)
∃σ1, σ2, a ∈ Is ∩ Ur : σ = σ1·a·σ2 ∧σ1�Lδs ∈ Straces(s)
∧σ1·a�Lδs /∈ Straces(s)∧∃r′ ∈ Qr : r

σ1·a�Lδr=====⇒ r′
σ2�Lδr====⇒

⇒ (∗ Lemma A.4.13 ∗)
∃σ1, σ2, a ∈ Is ∩ Ur : σ = σ1·a·σ2 ∧∃r′ ∈ Qr : r

σ1·a�Lδr=====⇒ r′
σ2�Lδr====⇒

∧ r′][χ(s) ∈ r][s after σ1·a

168

A.4. Proofs of Section 3.4.3: New parallel composition operator

⇒ (∗ Rename σ1·a to σ1 ∗)
∃r′ ∈ Qr, σ1, σ2 : σ = σ1·σ2 ∧ r

σ1�Lδr====⇒ r′
σ2�Lδr====⇒

∧ r′][χ(s) ∈ r][s after σ1
2

Lemma A.4.15 Let r ∈ LTS(Ir, Ur), s ∈ LTS(Is, Us), σ ∈ Straces(r][s),
σ�Lδr /∈ Straces(r), σ�Lδs /∈ Straces(s), x ∈ Ur ∪ Us ∪ {δ}.

∃t ∈ LTS(Ir, Ur), v ∈ LTS(Is, Us) : t
σ·x�Lδr=====⇒ ∧ v σ·x�Lδs=====⇒ ⇒ r][s

σ·x
==⇒

2

Proof This proof is analogous to the proof of Lemma A.4.14. According
to Lemma A.4.11 a component becomes chaotic after an unspecified input
action. In this case we have two components that become chaotic, because
σ�Lδr /∈ Straces(r) and σ�Lδs /∈ Straces(s). Because a component becomes
chaotic after an unspecified input action, and because Ir ∩ Is = ∅ the
components cannot become chaotic after the same trace. In the proof we
treat the case that component r is the first to become chaotic (the proof is
symmetrical for the case that s is the first to become chaotic). We split σ into
σ1·a·σ2·b·σ3 such that σ1�Lδr is the longest prefix that is still a suspension
trace of r. In other words, σ1·a�Lδr is not a suspension trace of r anymore.
Furthermore σ1·a·σ2 is the longest prefix of σ that is still a suspension trace
of s. This means that σ1·a·σ2·b�Lδs is not a suspension trace of s anymore.

⇒ (∗ We split σ ∗)
∃t ∈ LTS(Ir, Ur), v ∈ LTS(Is, Us) : t

σ·x�Lδr=====⇒ ∧ v σ·x�Lδs=====⇒
∧∃σ1, σ2, σ3, a, b : σ = σ1·a·σ2·b·σ3 ∧σ1�Lδr ∈ Straces(r)
∧σ1·a�Lδr /∈ Straces(r)∧σ1·a·σ2�Lδs ∈ Straces(s)
∧σ1·a·σ2·b /∈ Straces(s)

⇒ (∗ Lemma A.4.11 (input actions trigger chaos) ∗)
∃t ∈ LTS(Ir, Ur), v ∈ LTS(Is, Us) : t

σ·x�Lδr=====⇒ ∧ v σ·x�Lδs=====⇒
∧∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧σ1�Lδr ∈ Straces(r)∧σ1·a�Lδr /∈ Straces(r)
∧σ1·a·σ2�Lδs ∈ Straces(s)∧σ1·a·σ2·b /∈ Straces(s)

⇒ (∗ Definition Straces ∗)
∃t ∈ LTS(Ir, Ur), v ∈ LTS(Is, Us) : t

σ·x�Lδr=====⇒ ∧ v σ·x�Lδs=====⇒
∧∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧∃r′ ∈ Qr : r
σ1�Lδr====⇒ r′ ∧ r σ1·a�Lδr======⇒/

∧∃s′ ∈ Qs : s
σ1·a�Lδs=====⇒ s′

σ2�Lδs====⇒ ∧ s′ σ2·b�Lδs======⇒/
⇒ (∗ Lemma A.4.13 ∗)
∃t ∈ LTS(Ir, Ur), v ∈ LTS(Is, Us) : t

σ·x�Lδr=====⇒ ∧ v σ·x�Lδs=====⇒
∧∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧∃s′ ∈ Qs : s′
σ2�Lδs====⇒ ∧ s′ σ2·b�Lδs======⇒/

∧χ(r)][s′ ∈ r][s after σ1·a

169

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

⇒ (∗ Lemma A.4.9, note that in case s is the first to become
chaotic we would use LTS v ∗)

∃v ∈ LTS(Is, Us) : v
σ·x�Lδs=====⇒

∧∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧∃s′ ∈ Qs : s′
a·σ2�Lδs=====⇒ ∧ s′ σ2·b�Lδs======⇒/

∧χ(r)][s′ ∈ r][s after σ1·a∧χ(r)
σ2·b·σ3·x�Lδr========⇒

⇒ (∗ Definition =⇒ ∗)
∃v ∈ LTS(Is, Us) : v

σ·x�Lδs=====⇒
∧∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧∃s′ ∈ Qs : s′
σ2�Lδs====⇒ ∧ s′ σ2·b�Lδs======⇒/

∧χ(r)][s′ ∈ r][s after σ1·a
∧∃q ∈ Qχ(r) : χ(r)

σ2·b�Lδr=====⇒ q
σ3·x�Lδr=====⇒

⇒ (∗ Lemma A.4.13 ∗)
∃v ∈ LTS(Is, Us) : v

σ·x�Lδs=====⇒
∧∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧∃s′ ∈ Qs : χ(r)][s′ ∈ r][s after σ1·a
∧∃q ∈ Qχ(r) : χ(r)

σ2·b�Lδr=====⇒ q
σ3·x�Lδr=====⇒

∧ q][χ(s) ∈ χ(r)][s′ after σ2·b
⇒ (∗ Lemma A.4.9 ∗)

∧∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧∃s′ ∈ Qs : χ(r)][s′ ∈ r][s after σ1·a
∧∃q ∈ Qχ(r) : χ(r)

σ2·b�Lδr=====⇒ q
σ3·x�Lδr=====⇒

∧ q][χ(s) ∈ χ(r)][s′ after σ2·b
∧χ(s)

σ3·x�Lδs=====⇒
⇒ (∗ Definition after ∗)
∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∃s′ ∈ Qs : r][s
σ1·a===⇒χ(r)][s′

∧∃q ∈ Qχ(r) : χ(r)
σ2·b�Lδr=====⇒ q

σ3·x�Lδr=====⇒
∧χ(r)][s′

σ2·b===⇒ q][χ(s)
∧χ(s)

σ3·x�Lδs=====⇒
⇒ (∗ Proposition A.4.8 ∗)
∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧∃q ∈ Qχ(r), s
′ ∈ Qs : r][s

σ1·a===⇒χ(r)][s′ ∧χ(r)][s′
σ2·b===⇒ q][χ(s)

∧ q][χ(s)
σ3·x===⇒

⇒ (∗ Definition =⇒ ∗)
∃σ1, σ2, σ3, a ∈ Ir ∩ Us, b ∈ Is ∩ Ur : σ = σ1·a·σ2·b·σ3

∧ r][s σ1·a·σ2·b·σ3·x=========⇒
⇒ (∗ Logical reasoning (σ) ∗)

r][s
σ·x

==⇒
Note that the splitting of the projected traces is allowed because of

Lemma A.4.7. We did not refer to the lemma in the proof, because we think
that it would deteriorate the readability of the already lengthy proof. 2

170

A.4. Proofs of Section 3.4.3: New parallel composition operator

Lemma A.4.16 Let r ∈ LTS(Ir, Ur), s ∈ LTS(Is, Us), σ ∈ Straces(r][s),
σ�Lδs /∈ Straces(s) and x ∈ U δr

r
σ·x�Lδr=====⇒ ∧∃t ∈ LTS(Is, Us) : t

σ·x�Lδs=====⇒ ⇒ σ·x ∈ Straces(r][s)

2

Proof The lemma describes the case where the s component has become
chaotic in the composition. Because the non-chaotic part r can perform the
output action x, this means that the composition can also do the output
(the chaotic component s will perform the required input if there is one).

⇒ (∗ Lemma A.4.14 ∗)
∃t ∈ LTS(Is, Us) : t

σ·x�Lδs=====⇒ ∧∃σ1, σ2 : σ = σ1·σ2

∧∃r1 ∈ Qr : r
σ1�Lδr====⇒ r1

σ2�Lδr·x=====⇒ ∧ r1][χ(s) ∈ r][s after σ1

⇒ (∗ Definition after ∗)
∃t ∈ LTS(Is, Us) : t

σ·x�Lδs=====⇒ ∧∃σ1, σ2 : σ = σ1·σ2

∧∃r1 ∈ Qr : r
σ1�Lδr====⇒ r1

σ2�Lδr·x=====⇒ ∧ r][s σ1==⇒ r1][χ(s)
⇒ (∗ Lemma A.4.10 ∗)
∃σ1, σ2 : σ = σ1·σ2 ∧∃r1 ∈ Qr : r][s

σ1==⇒ r1][χ(s)∧ r1][χ(s)
σ2·x===⇒

⇒ (∗ Definition =⇒ ∗)
∃σ1, σ2 : σ = σ1·σ2 ∧ r][s

σ1·σ2·x=====⇒
⇒ (∗ Logical reasoning: σ = σ1·σ2 ∗)

r][s
σ·x

==⇒
2

Lemma A.4.17 Let r ∈ LTS(Ir, Ur), s ∈ LTS(Is, Us), σ ∈ Straces(r][s),
σ�Lδr ∈ Straces(r), σ�Lδs /∈ Straces(s), x ∈ Us

∃t ∈ LTS(Is, Us) : t
σ�Lδs·x=====⇒ ⇒ σ·x ∈ Straces(r][s)

2

Proof Component s becomes chaotic in the composition. The chaotic
system for s can do all output actions, for example x mentioned in the
lemma. As a result the composition can also do the output action. If there
is no corresponding input action x from r the composition can do the output
action. If there is a corresponding input action x from r, and r can perform
the action, the composition can also perform the action. In case r cannot
perform the action, the component becomes chaotic, but the composition
can do the output action. Like in the previous cases we split σ into σ1·σ2

where σ1 is the shortest prefix of σ that is not a suspension trace of s
anymore.

171

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

⇒ (∗ Lemma A.4.14 ∗)
∃t ∈ LTS(Is, Us), x ∈ Us : t

σ�Lδs·x=====⇒
∧∃r1, r

′ ∈ Qr, σ1, σ2 : σ = σ1·σ2 ∧ r1
σ2�Lδr====⇒ r′

∧ r1][χ(s) ∈ r][s after σ1

⇒ (∗ Definition after ∗)
∃t ∈ LTS(Is, Us), x ∈ Us : t

σ�Lδs·x=====⇒
∧∃r1, r

′ ∈ Qr, σ1, σ2 : σ = σ1·σ2 ∧ r1
σ2�Lδr====⇒ r′

∧ r][s σ1==⇒ r1][χ(s)
⇒ (∗ Lemma A.4.9 ∗)
∃r1, r

′ ∈ Qr, σ1, σ2 : σ = σ1·σ2 ∧ r1
σ2�Lδr====⇒ r′

∧ r][s σ1==⇒ r1][χ(s)∧χ(s)
σ2�Lδs·x=====⇒

⇒ (∗ Definition =⇒ ∗)
∃r1, r

′ ∈ Qr, σ1, σ2 : σ = σ1·σ2 ∧ r1
σ2�Lδr====⇒ r′

∧ r][s σ1==⇒ r1][χ(s)∧∃q ∈ Qχ(s) : χ(s)
σ2�Lδs====⇒ q

x
=⇒

⇒ (∗ Proposition A.4.8 (composition) ∗)
∃r1, r

′ ∈ Qr, σ1, σ2 : σ = σ1·σ2

∧∃q ∈ Qχ(s) : q
x

=⇒ ∧ r][s σ1==⇒ r1][χ(s)
σ2==⇒ r′][q

At this point we identify the cases x ∈ Us\Lr and x ∈ Ir ∩ Us. We
continue the proof with the former.

⇒ (∗ Lemma A.4.3 case 2 ∗)
∃r1, r

′ ∈ Qr, q ∈ Qχ, σ1, σ2 : σ = σ1·σ2

∧ r][s σ1==⇒ r1][χ(s)
σ2==⇒ r′][q

x
=⇒

⇒ (∗ Definition =⇒ ∗)
∃σ1, σ2 : σ = σ1·σ2 ∧ r][s

σ1·σ2·x=====⇒
⇒ (∗ Logical reasoning ∗)

r][s
σ·x

==⇒
The case for x ∈ Ir ∩ Us goes analogous using Lemma A.4.3 case 4. Note

that we make use of the fact that the transitions systems are convergent (see
Lemma A.4.13 for a similar case).

2

Theorem 3.4.11 Let s1, s2 ∈ LTS and i1, i2 ∈ IOTS with Is1 = Ii1 , Us1 =
Ui1 , Is2 = Ii2 , Us2 = Ui2 .

i1 ioco s1 ∧ i2 ioco s2 ⇒ i1][i2 ioco s1][s2

2

Proof The crux of this proof is that the parallel composition of s1 and s2

has state tuples that may consist of chaotic states. For non-chaotic states we
use the ioco premise on the components to deduce which output actions are
allowed in the respective components. In case the state is chaotic, we know
that all output actions of that component are possible. When we expand
the ioco definition we have to prove the following:

∀σ ∈ Straces(s1][s2) : out(i1][i2 after σ) ⊆ out(s1][s2 after σ)

172

A.4. Proofs of Section 3.4.3: New parallel composition operator

We start by showing that both implementation components can perform
the x action if it is in their label-set. The trace σ in the proof is a suspension
trace of s1][s2.

x ∈ out(i1][i2 after σ)
⇒ (∗ Definition out and after ∗)

i1][i2
σ·x

==⇒
⇒ (∗ Proposition A.4.12 ∗)

i1
σ·x�Lδi1=====⇒ ∧ i2

σ·x�Lδi2=====⇒
In other words, both components can perform the action when it is in

their label set.
The distinction between projections that are suspension traces and pro-

jections that are not is important. If a projection is not a suspension trace of
its respective component, this means that the component becomes chaotic
in the composition. We identify the following cases:

1. σ�Lδs1 ∈ Straces(s1) and σ�Lδs2 ∈ Straces(s2).

Because σ�Lδi1 is a suspension trace of s1 (σ�Lδs1 = σ�Lδi1), we can use
our ioco premise to figure out the output actions of s1 (likewise for
s2).

In case x ∈ Us1 we obtain the following result.

σ�Lδs1 ∈ Straces(s1)∧σ�Lδs2 ∈ Straces(s2)
∧x ∈ out(i1 after σ�Lδi1)

⇒ (∗ i1 ioco s1, Li1 = Ls1 ∗)
x ∈ out(s1 after σ�Lδs1)∧σ�Lδs2 ∈ Straces(s2)

⇒ (∗ Definitions out , after and Straces ∗)
∃s′1 ∈ Qs1 , s′2 ∈ Qs2 : s1

σ�Lδs1====⇒ s′1
x

=⇒ ∧ s2
σ�Lδs2====⇒ s′2

⇒ (∗ Proposition A.4.8 ∗)
∃s′1 ∈ Qs1 , s′2 ∈ Qs2 : s′1

x
=⇒ ∧ s1][s2

σ
=⇒ s′1][s′2

⇒ (∗ Lemma A.4.3 cases 1 and 4 ∗)
∃s′1 ∈ Qs1 , s′2 ∈ Qs2 : s1][s2

σ
=⇒ s′1][s′2

x
=⇒

⇒ (∗ Definition out and after ∗)
x ∈ out(s1][s2 after σ)

The case for x ∈ Us2 is analogous, now using Lemma A.4.3 cases 2 and
5. Note that we make use of the fact that the transitions systems are
convergent (see Lemma A.4.13 for a similar case).

In case x = δ we obtain a similar result using Lemma A.4.3 case
6, combined with the knowledge that x ∈ out(i1 after σ�Lδi1) and

x ∈ out(i2 after σ�Lδs2).

2. σ�Lδs1 ∈ Straces(s1) and σ�Lδs2 /∈ Straces(s2). This means that the s2

part of the parallel composition becomes chaotic. When x ∈ U δs2 the
chaotic process of s can perform this action, the non-chaotic part can
always perform the corresponding input action if there is one. First

173

Appendix A. Proofs of Chapter 3: Compositional testing with ioco

the case that x ∈ Us1 , next x ∈ Us2 and we end with x = δ. We know
that σ·x�Lδs2 is a trace of i2 (σ·x�Lδs2 = σ·x�Lδi2). This means that the
trace is executable by a transition system (a requirement we need for
the lemmas we use). In the proof we refer to this system as r.

σ�Lδs1 ∈ Straces(s1)∧σ�Lδs2 /∈ Straces(s2)
∧x ∈ out(i1 after σ�Lδi1)∧∃r ∈ LTS(Is2 , Us2) : r

σ·x�Lδs2=====⇒
⇒ (∗ i1 ioco s1 ∗)

σ�Lδs2 /∈ Straces(s2)∧x ∈ out(s1 after σ�Lδs1)
∧∃r ∈ LTS(Is2 , Us2) : r

σ·x�Lδs2=====⇒
⇒ (∗ Definition out and after ∗)

σ�Lδs2 /∈ Straces(s2)∧ s1
σ�Lδs1 ·x=====⇒

∧∃r ∈ LTS(Is2 , Us2) : r
σ·x�Lδs2=====⇒

⇒ (∗ Lemma A.4.5 (projection) ∗)
σ�Lδs2 /∈ Straces(s2)∧ s1

σ·x�Lδs1=====⇒
∧∃r ∈ LTS(Is2 , Us2) : r

σ·x�Lδs2=====⇒
⇒ (∗ Lemma A.4.16 ∗)

s1][s2
σ·x

==⇒
⇒ (∗ Definition out and after ∗)

x ∈ out(s1][s2 after σ)

The case x ∈ Us2 .

σ�Lδs1 ∈ Straces(s1)∧σ�Lδs2 /∈ Straces(s2)
∧∃r ∈ LTS(Is2 , Us2) : r

σ·x
==⇒

⇒ (∗ Lemma A.4.17 ∗)
s1][s2

σ·x
==⇒

⇒ (∗ Definition out and after and clean up ∗)
x ∈ out(s1][s2 after σ)

The case x = δ. This case is identical to the case for x ∈ Us1

3. σ�Lδs1 /∈ Straces(s1) and σ�Lδs2 ∈ Straces(s2). This case is symmetrical
with the previous one.

4. σ�Lδs1 /∈ Straces(s1) and σ�Lδs2 /∈ Straces(s2). In this case both s1

and s2 are chaotic in the parallel composition and can do all necessary
actions. The cases for x ∈ Ur, x ∈ Us and x = δ are all analogous.

σ�Lδs1 /∈ Straces(s1)∧σ�Lδs2 /∈ Straces(s2)∧∃r ∈ LTS(Is1 , Us1) :
r

σ·x�Lδs1=====⇒ ∧∃t ∈ LTS(Is2 , Us2) : t
σ·x�Lδs2=====⇒

⇒ (∗ Lemma A.4.15 ∗)
s1][s2

σ·x
==⇒

⇒ (∗ Definitions out and after ∗)
x ∈ out(s1][s2 after σ)

2

174

Appendix B

Proofs of Chapter 5: Atomic
action refinement in MBT

B.1 Proofs Section 5.3: Trace refinement

We start with the trace refinement proofs, because we use these in the
proofs on LTS refinement. This section centers around the proof of Propo-
sition 5.3.11. The lemmas before it are used to complete its proof.

Lemma B.1.1 Let σ ∈ L∗δ , σ′ ∈ L∗rδ, r : Lτ → FLTS

σ′ ∈ σ[r]rc ⇔ σ ∈ σ′〈r〉rc

2

Proof

Only if: The case for σ = ε is straightforward, as ε[r]rc = ε〈r〉rc = {ε}.

Let σ = λ1 · · ·λn with n ≥ 1 and ∀1 ≤ i ≤ n : λi ∈ Lδ.

σ′ ∈ (λ1 · · ·λn)[r]rc
⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)

σ′ ∈ {σ1 · · ·σn | ∀1 ≤ i ≤ n : σi ∈ TXStraces(r(λi))}
⇒ (∗ Definition 5.3.7 (complete trace contraction) ∗)

λ1 · · ·λn ∈ σ′〈r〉rc
⇒ (∗ Premise: σ = λ1 · · ·λn ∗)

σ ∈ σ′〈r〉rc

175

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

If: The case for σ = ε is straightforward, as ε[r]rc = ε〈r〉rc = {ε}.
σ ∈ σ′〈r〉rc

⇒ (∗ Definition 5.3.7 (complete trace contraction) ∗)
σ ∈ {λ1 · · ·λn ∈ L∗δ | ∃n > 0, σ1, . . . , σn ∈ L∗rδ : σ′ = σ1 · · ·σn
∧∀1 ≤ i ≤ n : σi ∈ TXStraces(r(λi))

⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)
σ′ ∈ σ[r]rc

2

Lemma B.1.2 Let σ ∈ L∗δ , σ′ ∈ L∗rδ, r : Lτ → FLTS

σ′ ∈ σ[r]inc ⇔ σ ∈ σ′〈r〉inc

2

Proof

Only if: The case for σ = ε is vacuously true because ε[r]inc = ∅.
Let σ = λ1 · · ·λn, with n ≥ 0 and ∀1 ≤ i ≤ n : λi ∈ Lδ.

σ′ ∈ (λ1 · · ·λn)[r]inc
⇒ (∗ Definition 5.3.4 (incomplete trace refinement) ∗)

σ′ ∈ {σ1 · · ·σn | ∀1 ≤ i < n : σi ∈ TXStraces(r(λi)),
σn ∈ XStraces(r(λn))}

⇒ (∗ Definition 5.3.8 (incomplete trace contraction) ∗)
λ1 · · ·λn ∈ σ′〈r〉inc

⇒ (∗ Premise: σ = λ1 · · ·λn ∗)
σ ∈ σ′〈r〉inc

If: The case for σ = ε is vacuously true, because ε〈r〉inc = ∅.
σ ∈ σ′〈r〉inc

⇒ (∗ Definition 5.3.8 (incomplete trace contraction) ∗)
σ ∈ {λ1 · · ·λn ∈ L∗δ | ∃n 0, σ1, . . . , σn : σ′ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))∧σn ∈ XStraces(r(λn))}

⇒ (∗ Definition 5.3.4 (incomplete trace refinement) ∗)
σ′ ∈ σ[r]inc

2

Proposition 5.3.11 Let σ ∈ L∗δ , σ′ ∈ L∗rδ, r : Lτ → FLTS

σ′ ∈ σ[r]⇔ σ ∈ σ′〈r〉

2

Proof This proof follows directly from Lemma B.1.1 and Lemma B.1.2. 2

The following lemmas are used in the proofs of the other sections. We have
put them in this appendix, because they are about trace refinement.

176

B.1. Proofs Section 5.3: Trace refinement

Lemma B.1.3 Let σ1, σ2 ∈ L∗δ , r : Lτ → FLTS

{σ′1·σ′2 | σ′1 ∈ σ1[r]rc , σ
′
2 ∈ σ2[r]rc} = (σ1·σ2)[r]rc

2

Proof

Subset (⊆) We identify the following cases:

σ1 = ε.

σ′1 ∈ σ1[r]rc ∧σ′2 ∈ σ2[r]rc
⇒ (∗ Premise: σ1 = ε and ε[r]rc = {ε} ∗)

σ′1 ∈ σ1[r]rc ∧σ′2 ∈ σ2[r]rc ∧σ′1·σ′2 = σ′2 ∧σ1·σ2 = σ2

⇒ (∗ Logical reasoning ∗)
σ′1·σ′2 ∈ (σ1·σ2)[r]rc

σ2 = ε. This case is similar to case 1.

σ1, σ2 6= ε.

σ′1 ∈ σ1[r]rc ∧σ′2 ∈ σ2[r]rc
⇒ (∗ Definition 5.3.3 (trace refinement) σ1, σ2 6= ε ∗)
∃n ≥ 1, µ1, . . . , µn ∈ Lδ : σ1 = µ1 · · ·µn
∧σ′1 ∈ {ρ1 · · · ρm | ∀1 ≤ i ≤ n : ρi ∈ TXStraces(r(µi))}
∧∃m ≥ 1, λ1, . . . , λm ∈ Lδ : σ2 = λ1 · · ·λm
∧σ′2 ∈ {υ1 · · · υm | ∀1 ≤ j ≤ m : υj ∈ TXStraces(r(λj))}

⇒ (∗ Set operations ∗)
∃n,m ≥ 1, µ1, . . . , µn, λ1, . . . , λn ∈ Lδ : σ1 = µ1 · · ·µn
∧σ2 = λ1 · · ·λm ∧σ′1·σ′2 ∈ {ρ1 · · · ρn·υ1 · · · υn |
∀1 ≤ i ≤ n : ρi ∈ TXStraces(r(µi)),
∀1 ≤ j ≤ m : υj ∈ TXStraces(r(λj))}

⇒ (∗ Rewrite of σ1 = µ1 · · ·µn and σ2 = λ1 · · ·λn ∗)
∃k ≥ 1, µ1, . . . , µk ∈ Lδ : σ1·σ2 = µ1 · · ·µk
∧σ′1·σ′2 ∈ {ρ1 · · · ρk | ∀1 ≤ i ≤ k : ρi ∈ TXStraces(r(µi))}

⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)
σ′1·σ′2 ∈ (σ1·σ2)[r]rc

Superset (⊇) We identify the following cases:

σ1 = ε

σ ∈ (σ1·σ2)[r]rc
⇒ (∗ Premise σ1 = ε ∗)

σ ∈ σ2[r]rc
⇒ (∗ Basic set operations ∗)

σ ∈ {σ′2 | σ′2 ∈ σ2[r]rc}
⇒ (∗ Definition 5.3.3 (trace refinement), use premise σ1 = ε

and ε ∈ ε[r]rc ∗)
σ ∈ {σ′1·σ′2 | σ′1 ∈ σ1[r]rc , σ

′
2 ∈ σ2[r]rc}

177

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

σ2 = ε. This case is similar to case 1.

σ1, σ2 6= ε. Assume that σ1 = λ1 · · ·λn for some n > 0 and that
σ2 = µ1 · · ·µm for some m > 0 with ∀m,n > 0 : λi, µi ∈ Lδ.

σ ∈ (σ1·σ2)[r]rc
⇒ (∗ Definition 5.3.3 (trace refinement) ∗)

σ ∈ {ρ1 · · · ρm+n | ∀1 ≤ i ≤ n : ρi ∈ TXStraces(r(λi)),
∀n+ 1 ≤ i ≤ m+ n : ρi ∈ TXStraces(r(µi))}

⇒ (∗ Definition 5.3.3 (trace refinement),
use premise: σ1 = λ1 · · ·λn, σ2 = µ1 · · ·µm ∗)

σ ∈ {σ′1·σ′2 | σ′1 ∈ σ1[r]rc , σ
′
2 ∈ σ2[r]}

2

Lemma B.1.4 Let σ1 ∈ L∗δ , σ2 ∈ L∗δ\{ε}

{σ′1·σ′2 | σ′1 ∈ σ1[r]rc , σ
′
2 ∈ σ2[r]inc} = (σ1·σ2)[r]inc

2

Proof

Subset (⊆) We identify the following cases:

• σ1 = ε

σ′1 ∈ σ1[r]rc ∧σ′2 ∈ σ2[r]inc
⇒ (∗ Premise: σ1 = ε and ε[r] = {ε} ∗)

σ′1 ∈ σ1[r]rc ∧σ′2 ∈ σ2[r]inc ∧σ′1·σ′2 = σ′2 ∧σ1·σ2 = σ2

⇒ (∗ Logical reasoning ∗)
σ′1·σ′2 ∈ (σ1·σ2)[r]inc

• σ2 = ε. This case is ruled out explicitly.

• σ1, σ2 6= ε.

σ′1 ∈ σ1[r]rc ∧σ′2 ∈ σ2[r]inc
⇒ (∗ Definition 5.3.4) ∗)

σ′1 ∈ σ1[r]rc ∧∃n ≥ 1, λ1 · · ·λn ∈ Lδ : σ2 = λ1 · · ·λn
∧σ′2 ∈ {υ1 · · · υn | ∀1 ≤ i < n : υi ∈ TXStraces(r(λi)),
υn ∈ XStraces(r(λn))}

⇒ (∗ Definition 5.3.3 ∗)
∃m ≥ 1, µ1 · · ·µm ∈ Lδ : σ1 = µ1 · · ·µm ∧σ′1 ∈ {ρ1 · · · ρm |
∀1 ≤ i ≤ m : ρ1 ∈ TXStraces(r(µi))}∧∃n ≥ 1, λ1 · · ·λn ∈ Lδ :
σ2 = λ1 · · ·λn ∧σ′2 ∈ {υ1 · · · υn | ∀1 ≤ i < n :
υi ∈ TXStraces(r(λi)), υn ∈ XStraces(r(λn))}

178

B.1. Proofs Section 5.3: Trace refinement

⇒ (∗ Set operations ∗)
∃n,m ≥ 1, µ1 · · ·µm, λ1 · · ·λn ∈ Lδ : σ1 = µ1 · · ·µm
∧σ2 = λ1 · · ·λn ∧σ′1·σ′2 ∈ {ρ1 · · · ρm·υ1 · · · υn | ∀1 ≤ i ≤ m :
ρi ∈ TXStraces(r(µi)), 1 ≤ j < n : υj ∈ TXStraces(r(λi)),
υn ∈ XStraces(r(λn))}

⇒ (∗ Definition 5.3.4, logical reasoning ∗)
σ′1·σ′2 ∈ (σ1·σ2)[r]inc

Superset (⊇) We identify the following cases:

• σ1 = ε
σ ∈ (σ1·σ2)[r]inc

⇒ (∗ Premise: σ1 = ε ∗)
σ ∈ σ2[r]inc

⇒ (∗ Basic set operations ∗)
σ ∈ {σ′2 | σ′2 ∈ σ2[r]inc}

⇒ (∗ Definition 5.3.3 (trace refinement), use premise: σ1 = ε ∗)
σ ∈ {σ′1·σ′2 | σ′1 ∈ σ1[r]rc , σ

′
2 ∈ σ2[r]inc}

• σ2 = ε, this case is ruled out explicitly.

• σ1, σ2 6= ε. Assume that σ1 = λ1 · · ·λn and that σ2 = µ1 · · ·µm
with m,n > 0.

σ ∈ (σ1·σ2)[r]inc
⇒ (∗ Definition 5.3.4 (trace refinement) ∗)

σ ∈ {σ′1 · · ·σ′m+n | ∀1 ≤ i ≤ n : σi ∈ TXStraces(r(λi)),
∀n+ 1 ≤ i ≤ m+ n− 1 : σ′i ∈ TXStraces(r(µi))
∧σm+n ∈ XStraces(r(µm))}

⇒ (∗ Definition 5.3.3, Definition 5.3.4 (trace refinement),
use premise: σ1 = λ1 · · ·λn, σ2 = µ1 · · ·µm ∗)

σ ∈ {σ′1·σ′2 | σ′1 ∈ σ1[r]rc , σ
′
2 ∈ σ2[r]inc}

2

Lemma B.1.5 Let σ1, σ2 ∈ L∗δ , r : Lτ → FLTS

σ′1 ∈ σ1[r]rc ∧σ
′
2 ∈ σ2[r]⇒ σ′1·σ′2 ∈ (σ1·σ2)[r]

2

Proof Definition 5.3.5 gives two possibilities for σ′2 : σ′2 ∈ σ2[r]rc or σ′2 ∈
σ2[r]inc . The first case is proven in Lemma B.1.3 and the second case in
Lemma B.1.4.

2

Lemma B.1.6 Let σ ∈ L∗δ , r : Lτ → FLTS

σ ∈ σ[r]rc〈r〉rc
2

179

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

Proof Let σ′ ∈ σ[r]rc (which always exists, because σ[r]rc 6= ∅). Using
Lemma B.1.1, this implies σ ∈ σ′〈r〉rc .

2

Lemma B.1.7 Let σ ∈ L∗rδ, r : Lτ → FLTS

σ〈r〉 6= ∅ ⇒ σ ∈ σ〈r〉rc [r]rc

2

Proof Let σ′ ∈ σ〈r〉rc (which always exists, because the premise is that
σ〈r〉rc 6= ∅). Using Lemma B.1.1, this implies σ ∈ σ′[r]rc .

2

B.2 Proofs Section 5.2: LTS refinement

One of the main results of LTS refinement is Theorem 5.3.12. Most of the
material in this section are building blocks to construct its proof.

In the following lemma we show that the refined transition system can
perform ε transitions, if the refinement transitions system can perform them.

Lemma B.2.1 Let q1, q2 ∈ Q,µ ∈ Lτ , q′1, q′2 ∈ Qr(µ)

q1
µ−→ q2 ∧ q′1

ε
=⇒

r(µ)
q′2 implies (q2, q

′
1)

ε
=⇒r (q2, q

′
2)

2

Proof We prove the following stronger case for some n ≥ 0, by induction
on n:

q1
µ−→ q2 ∧ q′1 τn−−→

r(µ)
q′2 implies (q2, q

′
1) τn−−→r (q2, q

′
2)

Basic step: n = 0.

q1
µ−→ q2 ∧ q′1

τ0−−→
r(µ)

q′2
⇒ (∗ Definition 5.2.1 (LTS refinement T2) ∗)

q1
µ−→ q2 ∧ (q2, q

′
1) τ0−−→r (q2, q

′
2)

Induction step: ε = τn for some n ≥ 0 and assume that the lemma holds
for some 0 ≤ i < n.

180

B.2. Proofs Section 5.2: LTS refinement

q1
µ−→ q2 ∧ q′1

τ i+1−−−→
r(µ)

q′2
⇒ (∗ Definition −→ ∗)

q1
µ−→ q2 ∧∃q′3 ∈ Qr(µ) : q′1

τ i−−→
r(µ)

q′3
τ−→

r(µ)
q′2

⇒ (∗ Induction ∗)
q1

µ−→ q2 ∧∃q′3 ∈ Qr(µ) : q′1
τ i−−→

r(µ)
q′3

τ−→
r(µ)

q′2

∧ (q2, q
′
1) τ i−−→r (q2, q

′
3)

⇒ (∗ Definition 5.2.1 (LTS refinement T2) ∗)
∃q′3 ∈ Qr(µ) : (q2, q

′
1) τ i−−→r (q2, q

′
3)∧ (q2, q

′
3) τ−→r (q2, q

′
2))

⇒ (∗ Definition −→ ∗)
(q2, q

′
1) τ i+1−−−→r (q2, q

′
2)

2

In the following lemma we show that the refined transition system can
perform single action transitions (double arrow) if the refinement transition
system can do so.

Lemma B.2.2 Let q1, q2 ∈ Q,µ ∈ Lτ , q′1 ∈ Qr(µ), q
′
2 ∈ Qr(µ)\{finalr(µ)}, σ ∈

L∗r(µ)δ

q1
µ−→ q2 ∧ q′1

λ
=⇒

r(µ)
q′2 implies (q2, q

′
1)

λ
=⇒r (q2, q

′
2)

2

Proof We make a distinction between λ ∈ Lr(µ) and λ = δ, beginning the
proof with the former.

q1
µ−→ q2 ∧ q′1

λ
=⇒

r(µ)
q′2

⇒ (∗ Definition =⇒ ∗)
q1

µ−→ q2 ∧∃q3, q
′
4 ∈ Qr(µ) : q′1

ε
=⇒

r(µ)
q′3

λ−→
r(µ)

q′4
ε

=⇒
r(µ)

q′2
⇒ (∗ Lemma B.2.1 ∗)

q1
µ−→ q2 ∧∃q3, q

′
4 ∈ Qr(µ) : q′1

ε
=⇒

r(µ)
q′3

λ−→
r(µ)

q′4
ε

=⇒
r(µ)

q′2
∧ (q2, q

′
1)

ε
=⇒r (q2, q

′
3)∧ (q2, q

′
4)

ε
=⇒r (q2, q

′
2)

⇒ (∗ Definition 5.2.1 (LTS refinement T2) ∗)
(q2, q

′
1)

ε
=⇒r (q2, q

′
3)∧ (q2, q

′
4)

ε
=⇒r (q2, q

′
2)∧ (q2, q

′
3) λ−→r (q2, q

′
4)

⇒ (∗ Definition =⇒ ∗)
(q2, q

′
1)

λ
=⇒r (q2, q

′
2)

We continue with λ = δ
q1

µ−→ q2 ∧ q′1
δ

=⇒
r(µ)

q′2
⇒ (∗ Definition =⇒ ∗)

q1
µ−→ q2 ∧∃q3, q

′
4 ∈ Qr(µ) : q′1

ε
=⇒

r(µ)
q′3

δ−→
r(µ)

q′4
ε

=⇒
r(µ)

q′2
⇒ (∗ Lemma B.2.1 ∗)

q1
µ−→ q2 ∧∃q3, q

′
4 ∈ Qr(µ) : q′1

ε
=⇒

r(µ)
q′3

δ−→
r(µ)

q′4
ε

=⇒
r(µ)

q′2
∧ (q2, q

′
1)

ε
=⇒r (q2, q

′
3)∧ (q2, q

′
4)

ε
=⇒r (q2, q

′
2)

181

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Definition δ ∗)
q1

µ−→ q2 ∧∃q3, q
′
4 ∈ Qr(µ) : q′1

ε
=⇒

r(µ)
q′3

δ−→
r(µ)

q′4
ε

=⇒
r(µ)

q′2
∧ (q1, q

′
1)

ε
=⇒r (q2, q

′
3)∧ (q2, q

′
4)

ε
=⇒r (q2, q

′
2)

∧∀µ′ ∈ Ur(µ)τ : q′3
µ′−−→/

r(µ)
∧ q′3 = q′4

⇒ (∗ Definition 5.2.1 (LTS refinement T2) ∗)
(q1, q

′
1)

ε
=⇒r q2, q

′
3)∧ (q2, q

′
4)

ε
=⇒r (q2, q

′
2)

∧∀µ′ ∈ Urτ : (q2, q
′
3) µ′−−→/ r ∧ q′3 = q′4

This last step may need some explanation. q′3 cannot do an output action
nor a τ action, in other words it can only do an input action. T2 of Defi-
nition 5.2.1 shows that this means that (q2, q

′
3) can also not do any output

actions (or τ action) of r(µ). Furthermore, because the refinement transi-
tion systems have unique state spaces, and the only way to add intermediate
transitions is via T2, we know that (q2, q3) cannot do any action of Urτ .

It could be that an output action can be added via T1, when q′3/q
′
4 is a

final state. This can only be the case when the transition q′4
ε

=⇒
r(µ)

q′2 consists
of zero τ steps; this means that q′3 = q′4 = q′2. This case is explicitly ruled
out, because the lemma is not applicable when q′2 is a final state.

⇒ (∗ Definition δ ∗)
(q1, q

′
1)

ε
=⇒r (q2, q

′
3)∧ (q2, q

′
4)

ε
=⇒r (q2, q

′
2)∧ (q2, q

′
3) δ−→r (q2, q

′
3)∧ q′3 = q′4

⇒ (∗ Logical reasoning ∗)
(q1, q

′
1)

ε
=⇒r (q2, q

′
3)∧ (q2, q

′
4)

ε
=⇒r (q2, q

′
2)∧ (q2, q

′
3) δ−→r (q2, q

′
4)

⇒ (∗ Definition =⇒ ∗)
(q1, q

′
1)

δ
=⇒r (q2, q

′
2)

2

In the following lemma we show that the refined transition system can
perform any trace that the refinement transition system can perform.

Lemma B.2.3 Let q1, q2 ∈ Q,µ ∈ Lτ , q′1 ∈ Qr(µ), q
′
2 ∈ Qr(µ)\{finalr(µ)}, σ ∈

L∗r(µ)δ

q1
µ−→ q2 ∧ q′1

σ
=⇒

r(µ)
q′2 implies (q2, q

′
1)

σ
=⇒r (q2, q

′
2)

2

Proof Proof by induction on the length of σ.

Basic step: σ = ε. This case is proven in Lemma B.2.1.

Induction step: Let σ = σ1·λ1 with σ1 ∈ L∗r(µ)δ and λ1 ∈ Lrδ.

q1
µ−→ q2 ∧ q′1

σ1·λ1====⇒
r(µ)

q′2
⇒ (∗ Definition =⇒ ∗)

q1
µ−→ q2 ∧∃q′3 ∈ Qr(µ) : q′1

σ1==⇒
r(µ)

q′3
λ1==⇒

r(µ)
q′2

⇒ (∗ Induction ∗)
q1

µ−→ q2 ∧∃q′3 ∈ Qr(µ) : q′1
σ1==⇒

r(µ)
q′3

λ1==⇒
r(µ)

q′2
∧ (q2, q

′
1)

σ1==⇒r (q2, q
′
3)

182

B.2. Proofs Section 5.2: LTS refinement

⇒ (∗ Lemma B.2.2 ∗)
(q2, q

′
1)

σ1==⇒r (q2, q
′
3)∧ (q2, q

′
3)

λ1==⇒r (q2, q
′
2)

⇒ (∗ Definition =⇒ ∗)
(q2, q

′
1)

σ1·λ1====⇒r (q2, q
′
2)

⇒ (∗ Premise: σ = σ1·λ1 ∗)
(q2, q

′
1)

σ
=⇒r (q2, q

′
2)

2

In the lemma’s before we focused on T2 transitions. In the following
lemma’s we add T1 transitions, thus adding transitions starting in the start
state of the refinement transition system.

The following lemma shows that the refined transition system can per-
form traces starting in the start state of the refinement transition system.

Lemma B.2.4 Let q1, q2 ∈ Q,µ ∈ Lτ , q′ ∈ Qr(µ), q
′
2 ∈ Qr(µ)\{finalr(µ)}, λ ∈

Lr(µ), σ ∈ L∗r(µ)δ

q1
µ−→ q2 ∧ r(µ) λ−→ q′

σ
=⇒ q′2 implies ∀q′1 ∈ Final : (q1, q

′
1)

λ·σ
===⇒r (q2, q

′
2)

2

Proof
q1

µ−→ q2 ∧ r(µ) λ−→
r(µ)

q′
σ

=⇒
r(µ)

q′2
⇒ (∗ Lemma B.2.3 ∗)

q1
µ−→ q2 ∧ r(µ) λ−→

r(µ)
q′

σ
=⇒

r(µ)
q′2

∧ (q2, q
′)

σ
=⇒r (q2, q

′
2)

⇒ (∗ Definition 5.2.1 (LTS refinement T1) ∗)
(q2, q

′)
σ

=⇒r (q2, q
′
2)∧∀q′1 ∈ Final : (q1, q

′
1) λ−→r (q2, q

′)
⇒ (∗ Definition =⇒ ∗)
∀q′1 ∈ Final : (q1, q

′
1)

λ·σ
===⇒r (q2, q

′
2)

2

The following lemma shows that the refined transition system can per-
form any trace that the refinement transition system can do between start
and final state, as long as the trace does not end with δ.

Lemma B.2.5
Let q1, q2 ∈ Q, µ ∈ Lτ , q′ ∈ Qr(µ), λ ∈ Lr(µ), σ ∈ L∗r(µ)δ\(L

∗
r(µ)δ·δ)

q1
µ−→ q2 ∧ r(µ) λ−→ q′

σ
=⇒ finalr(µ) implies

∀q′1 ∈ Final : (q1, q
′
1)

λ·σ
===⇒r (q2, finalr(µ))

2

Proof We want to apply Lemma B.2.4, but this lemma is not directly
applicable because we use the final state finalr(µ). Therefore we refer to the
state before finalr(µ). Let σ = σ1·µ1. Note that we assume that σ does not
end with δ (i.e., µ1 ∈ Lr(µ)τ .

183

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Definition =⇒ and premise ∗)
q1

µ−→ q2 ∧∃q′1 ∈ Qr(µ) : r(µ) λ−→
r(µ)

q′
σ1==⇒

r(µ)
q′1

µ1−−→
r(µ)

finalr(µ)

⇒ (∗ Definition 4.6.1 constraint 5: no outgoing transitions in final ∗)
q1

µ−→ q2 ∧∃q′1 ∈ Qr(µ) : r(µ) λ−→
r(µ)

q′
σ1==⇒

r(µ)
q′1

µ1−−→
r(µ)

finalr(µ)

∧ q′1 /∈ Final
⇒ (∗ Lemma B.2.4 ∗)

q1
µ−→ q2 ∧∃q′1 ∈ Qr(µ) : q′1

µ1−−→
r(µ)

finalr(µ)

∧∀q′2 ∈ Final : (q1, q
′
2)

λ·σ1===⇒r (q2, q
′
1)

⇒ (∗ Definition 5.2.1 (LTS refinement T2) ∗)
∀q′2 ∈ Final : (q1, q

′
2)

λ·σ1===⇒r (q2, q
′
1)∧ (q2, q

′
1) µ1−−→r (q2, finalr(µ))

⇒ (∗ Definition =⇒ ∗)
∀q′2 ∈ Final : (q1, q

′
2)

λ·σ1·µ1=====⇒r (q2, finalr(µ))

⇒ (∗ Premise: σ = σ1·µ1 ∗)
∀q′2 ∈ Final : (q1, q

′
2)

λ·σ
===⇒r (q2, finalr(µ))

2

In the following lemma we show the relation between abstract actions µ
and the possible completely refined traces in the refined system.

Lemma B.2.6 Let q, q1 ∈ Q, q′ ∈ Final, µ ∈ Lτ

q µ−→ q1 ∧σ ∈ µ[r]rc ⇒ (q, q′)
σ

=⇒r (q1, finalr(µ))

2

Proof From the definition of LTS refinement (Definition 5.2.1) we see that
there are two ways to add transitions: T1 and T2. As q′ ∈ Final we know
that only T1 is applicable in state (q, q′). We identify the following cases:

• µ = τ . r(τ) τ−→ finalr(τ) is the only transition in r(τ). This means that
τ [r]rc = {ε}.

q τ−→ q1 ∧ r(τ) τ−→ finalr(τ)

⇒ (∗ Definition 5.2.1 (LTS refinement) ∗)
(q, q′) τ−→r (q1, finalr(τ))

• µ 6= τ . Because σ ∈ µ[r]rc we know that σ does not start or end with
δ. Let σ = λ1 · · ·λn for some n ≥ 1 and ∀1 ≤ i ≤ n : λi ∈ Lr(µ)δ.

q µ−→ q1 ∧ (λ1 · · ·λn) ∈ µ[r]rc
⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)

q µ−→ q1 ∧ (λ1 · · ·λn) ∈ TXStraces(r(µ))
⇒ (∗ Definition 5.3.1 (TXStraces) ∗)

q µ−→ q1 ∧ r(µ)
λ1···λn=====⇒ finalr(µ) ∧ (λ1 · · ·λn) /∈ (δ·L∗r(µ)δ ∪ Lr(µ)δ·δ)

184

B.2. Proofs Section 5.2: LTS refinement

⇒ (∗ Logical reasoning ∗)
q µ−→ q1 ∧ r(µ)

λ1···λn=====⇒ finalµ[r] ∧λ1, λn 6= δ

⇒ (∗ Constraints 1,2,3 in Definition 4.6.1 (σ does not start with
a τ action) together with definition =⇒ and −→ ∗)

q µ−→ q1 ∧∃q′1 ∈ Qr(µ) : r(µ) λ1−−→r q
′
1

λ2···λn=====⇒r finalr(µ) ∧λ1, λn 6= δ

⇒ (∗ Lemma B.2.5, note that λ1, λn 6= δ ∗)
∀q′ ∈ Final : (q, q′)

λ1···λn=====⇒r (q1, finalr(µ))

⇒ (∗ Premise: σ = λ1 · · ·λn ∗)
∀q′ ∈ Final : (q, q′)

σ
=⇒r (q1, finalr(µ))

2

In the following lemma we show the relation between abstract actions µ
and the possible incompletely refined traces in the refined system.

Lemma B.2.7 Let q, q1 ∈ Q, q′ ∈ Final, µ ∈ Lτ

q µ−→ q1 ∧σ ∈ µ[r]inc ⇒ (q, q′)
σ

=⇒r

2

Proof We identify the following cases:

• µ = τ . Because τ [r]inc = ∅, the lemma is vacuously true for this case.

• µ 6= τ . Because σ ∈ µ[r]inc we know that σ does not start with δ,
furthermore we know that σ does not end in a final state in r(µ). Let
σ = λ1 · · ·λn for some n ≥ 1 and ∀1 ≤ i ≤ n : λi ∈ Lr(µ)δ.

q µ−→ q1 ∧ (λ1 · · ·λn) ∈ µ[r]inc
⇒ (∗ Definition 5.3.4 (incomplete trace refinement) ∗)

q µ−→ q1 ∧ (λ1 · · ·λn) ∈ XStraces(r(µ))
⇒ (∗ Definition 5.3.2 (XStraces) ∗)

q µ−→ q1 ∧∃q′ ∈ Qr(µ)\{finalr(µ)} : r(µ)
λ1···λn=====⇒ q′

∧ (λ1 · · ·λn) /∈ (δ·L∗r(µ)δ ∪ {ε})
⇒ (∗ Logical reasoning ∗)

q µ−→ q1 ∧∃q′ ∈ Qr(µ)\{finalr(µ)} : r(µ)
λ1···λn=====⇒ q′ ∧λ1 6= δ

⇒ (∗ Constraints 1,2,3 in Definition 4.6.1 (σ does not start with a τ
action) together with definition =⇒ and −→ ∗)

q µ−→ q1 ∧∃q′ ∈ Qr(µ)\{finalr(µ)}, q′1 ∈ Qr(µ) : r(µ) λ1−−→ q′1
λ2···λn=====⇒ q′

∧λ1 6= δ
⇒ (∗ Lemma B.2.4 ∗)
∀q′2 ∈ Final : (q1, q

′
2)

λ1···λn=====⇒r (q1, q
′)

⇒ (∗ Definition =⇒ ∗)
∀q′2 ∈ Final : (q1, q

′
2)

λ1···λn=====⇒r

⇒ (∗ Premise: σ = λ1 · · ·λn ∗)
∀q′2 ∈ Final : (q1, q

′
2)

σ
=⇒r

185

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

2

We introduce a definition for the concept that a trace, or more precise
an execution fragment in a refined system does not encounter intermediate
states where the second state element is in Final. We call this property final
state clean of fsclean for short.

Definition B.2.8 Let (q0, q
′
0), (q, q′) ∈ Qr , σ = λ1 · · ·λn for some n ≥ 1

and ∀1 ≤ i ≤ n : λi ∈ Lrτδ (we use the notation (qn, q
′
n) = (q, q′)).

fsclean[(q0, q
′
0) λ1−−→r · · · λn−−→r (q, q′)] =def

∀1 ≤ i < n : (qi−1, q
′
i−1) λi−−→r (qi, q

′
i)⇒ q′i /∈ Final

We lift this notation in a straightforward manner to the double arrow
notation.

The following lemmas are the building blocks for Lemma B.2.12. We
start with single actions, continue with ε and end with traces.

Lemma B.2.9 Let (q0, q
′
0), (q, q′) ∈ Qr , q

′
0 /∈ Final, λ ∈ Lrδ

fsclean[(q0, q
′
0) λ−→r (q, q′)]⇒ ∃µ ∈ Lτ : q′0

λ−→
r(µ)

q′ ∧ q0 = q

2

Proof We identify the following cases:

• λ ∈ Lr

⇒ (∗ Definition 5.2.1 (LTS refinement T2) ∗)
∃µ ∈ Lτ : q′0

λ−→
r(µ)

q′ ∧ q0 = q

• λ = δ

⇒ (∗ Definition δ ∗)
fsclean[(q0, q

′
0) δ−→r (q, q′)]

∧∀µ ∈ Urτ : (q0, q
′
0) µ′−−→/ r ∧ (q0, q

′
0) = (q, q′)

⇒ (∗ Logical reasoning using Definition 5.2.1 (LTS refinement T2)
and Definition 4.6.1: 1,2,3 ∗)

∃µ ∈ Lτ : (∀µ′ ∈ Ur(µ′) ∪ {τ} : q′0
µ′−−→/

r(µ)
)∧ (q0, q

′
0) = (q, q′)

⇒ (∗ Definition δ ∗)
∃µ ∈ Lτ : q′0

δ−→
r(µ)

q′0 ∧ (q0, q
′
0) = (q, q′)

⇒ (∗ Logical reasoning ∗)
∃µ ∈ Lτ : q′0

δ−→
r(µ)

q′ ∧ q0 = q

2

186

B.2. Proofs Section 5.2: LTS refinement

Lemma B.2.10 Let (q0, q
′
0), (q, q′) ∈ Qr , q

′
0 /∈ Final

fsclean[(q0, q
′
0)

ε
=⇒r (q, q′)]⇒ ∃µ ∈ Lτ : q′0

ε
=⇒

r(µ)
q′ ∧ q0 = q

2

Proof We prove the following stronger statement for some n ≥ 0:

fsclean[(q0, q
′
0) τn−−→r (q, q′)]⇒ ∃µ ∈ Lτ : q′0

τn−−→
r(µ)

q′ ∧ q0 = q

Proof by induction on n.

Basic step: n = 0.

fsclean[(q0, q
′
0) τ0−−→r (q, q′)]

⇒ (∗ Definition τ0 ∗)
fsclean[(q0, q

′
0) τ0−−→r (q, q′)]∧ (q0, q

′
0) = (q, q′)

⇒ (∗ Logical reasoning, using the definition of τ0 ∗)
fsclean[(q0, q

′
0) τ0−−→r (q, q′)]∧ q′0

τ0−−→ q′ ∧ q0 = q
⇒ (∗ Logical reasoning, using Definition 5.2.1 (lts refinement T2);

states of refinement transition systems are unique ∗)
∃µ ∈ Lτ : q′0

τ0−−→
r(µ)

q′ ∧ q0 = q

Induction step: n = j + 1. Assume that the lemma holds for j

fsclean[(q0, q
′
0) τ j ·τ−−−→r (q, q′)]

⇒ (∗ Definition −→ ∗)
∃(q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0) τ j−−→r (q1, q

′
1) τ−→r (q, q′)]

⇒ (∗ Induction ∗)
∃(q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0) τ j−−→r (q1, q

′
1) τ−→r (q, q′)]

∧∃µ ∈ Lτ : q′0
τ j−−→

r(µ)
q′1 ∧ q0 = q1

⇒ (∗ Definition 5.2.1 (LTS refinement T2). ∗)
∃(q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0) τ j−−→r (q1, q

′
1) τ−→r (q, q′)]

∧∃µ ∈ Lτ : q′0
τ j−−→

r(µ)
q′1 ∧ q0 = q1 ∧∃µ′ ∈ Lτ : q′1

τ−→
r(µ′)q

′ ∧ q1 = q

⇒ (∗ Logical reasoning using Definition 5.2.1 (LTS refinement):
µ = µ′, because states of refinement transition systems
are unique. ∗)

∃µ ∈ Lτ : q′0
τ j−−→

r(µ)
q′1

τ−→
r(µ)

q′ ∧ q0 = q

⇒ (∗ Definition −→ ∗)
∃µ ∈ Lτ : q′0

τ j ·τ−−−→
r(µ)

q′ ∧ q0 = q

2

187

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

Lemma B.2.11 Let (q0, q
′
0), (q, q′) ∈ Qr , q

′
0 /∈ Final, λ ∈ Lrδ

fsclean[(q0, q
′
0)

λ
=⇒r (q, q′)]⇒ ∃µ ∈ Lτ : q′0

λ
=⇒

r(µ)
q′ ∧ q0 = q

2

Proof
fsclean[(q0, q

′
0)

λ
=⇒r (q, q′)]

⇒ (∗ Definition =⇒ , using fsclean definition ∗)
∃(q1, q

′
1), (q2, q

′
2) ∈ Qr :

fsclean[(q0, q
′
0)

ε
=⇒r (q1, q

′
1) λ−→r (q2, q

′
2)

ε
=⇒r (q, q′)]∧ q′1, q′2 /∈ Final

⇒ (∗ Lemma B.2.10 ∗)
∃(q1, q

′
1), (q2, q

′
2) ∈ Qr :

fsclean[(q0, q
′
0)

ε
=⇒r (q1, q

′
1) λ−→r (q2, q

′
2)

ε
=⇒r (q, q′)]∧ q′1 /∈ Final

∃µ1 ∈ Lτ : q′0
ε

=⇒
r(µ1)

q′1 ∧ q0 = q1 ∧∃µ2 ∈ Lτ : q′2
ε

=⇒
r(µ2)

q′ ∧ q2 = q

⇒ (∗ Lemma B.2.9 ∗)
∃(q1, q

′
1), (q2, q

′
2) ∈ Qr :

∃µ1 ∈ Lτ : q′0
ε

=⇒
r(µ1)

q′1 ∧ q0 = q1

∧∃µ2 ∈ Lτ : q′2
ε

=⇒
r(µ2)

q′ ∧ q2 = q

∧∃µ3 ∈ Lτ : q′1
λ−→

r(µ3)
q′2 ∧ q1 = q2

⇒ (∗ States of refinement transition systems are unique.
Therefore µ1 = µ2 = µ3 ∗)

∃(q1, q
′
1), (q2, q

′
2) ∈ Qr , µ ∈ Lτ :

q′0
ε

=⇒
r(µ)

q′1
λ−→

r(µ)
q′2

ε
=⇒

r(µ)
q′ ∧ q0 = q

⇒ (∗ Definition =⇒ ∗)
∃µ ∈ Lτ : q′0

λ
=⇒

r(µ)
q′ ∧ q0 = q

2

The following lemma shows that in a refined transition system, traces
that are fsclean consist entirely of T2 transitions when the second element
of the starting state is not in Final.

Lemma B.2.12 Let (q0, q
′
0), (q, q′) ∈ Qr , q

′
0 /∈ Final, σ ∈ L∗rδ

fsclean[(q0, q
′
0)

σ
=⇒r (q, q′)]⇒ ∃µ ∈ Lτ : q′0

σ
=⇒

r(µ)
q′ ∧ q0 = q

2

Proof To understand this proof it is important to realize that the state
spaces of refinement transition system are distinct. This makes it possible
to uniquely identify states in a refinement transition system. As a result
we can ‘connect’ incoming and outgoing transitions to states in refinement
transition systems.
Proof by induction on the length of σ

Basic step: σ = ε. This step follows from Lemma B.2.10.

188

B.2. Proofs Section 5.2: LTS refinement

Induction step: σ = σ′·λ and assume that the lemma holds for σ′.

fsclean[(q0, q
′
0)

σ′·λ
===⇒r (q, q′)]

⇒ (∗ Definition =⇒ ∗)
∃(q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0)

σ′
==⇒r (q1, q

′
1)

λ
=⇒r (q, q′)]

⇒ (∗ Induction ∗)
∃(q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0)

σ′
==⇒r (q1, q

′
1)

λ
=⇒r (q, q′)]

∧∃µ ∈ Lτ : q′0
σ′

==⇒
r(µ)

q′1 ∧ q0 = q1

⇒ (∗ Lemma B.2.11, q′1 /∈ Final, because of fsclean[] ∗)
∃(q1, q

′
1) ∈ Qr , µ ∈ Lτ : q′0

σ′
==⇒

r(µ)
q′1 ∧ q0 = q1

∧∃µ1 ∈ Lτ : q′1
λ

=⇒
r(µ1)

q′ ∧ q1 = q

⇒ (∗ States of refinement transition systems are unique.
Therefore µ = µ1 ∗)

∃µ ∈ Lτ : q′0
σ′

==⇒
r(µ)

q′1
λ

=⇒
r(µ)

q′ ∧ q0 = q

⇒ (∗ Definition =⇒ ∗)
∃µ ∈ Lτ : q′0

σ′·λ
===⇒

r(µ)
q′ ∧ q0 = q

2

The following lemmas are the building blocks for Lemma B.2.16. That
lemma is similar to Lemma B.2.12 above, but describes the case that q′0 (the
second element of the first state) is a member of Final.

Note that although we do not always make it explicit, in the proofs we
do make use of the fact that final states do not have outgoing transitions.

Lemma B.2.13 Let (q0, q
′
0), (q, q′) ∈ Qr with q′0 ∈ Final

fsclean[(q0, q
′
0)

ε
=⇒r (q, q′)]
⇒ ((q0, q

′
0) = (q, q′)∨ (q0

τ−→ q ∧ r(τ) τ−→ q′ ∧ q′ = finalr(τ)))
2

Proof
fsclean[(q0, q

′
0)

ε
=⇒r (q, q′)]

⇒ (∗ Definition ε ∗)
∃n ≥ 0 : fsclean[(q0, q

′
0) τn−−→r (q, q′)]

According to Definition 5.2.1 (LTS refinement) there are a couple of
possibilities. One is that n = 0 and that (q0, q

′
0) = (q, q′), thus fulfilling the

first part of the or-clause. Because of Definition 4.6.1: constraints 1,2 and
3 only the refinement transition system τ is allowed to start with τ , this is
the second possibility.

⇒ (∗ Definition −→ ∗)
∃n ≥ 0, (q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0) τ−→r (q1, q

′
1) τn−1−−−→ (q, q′)]

⇒ (∗ Definition 5.2.1 (LTS refinement T1) ∗)
∃n ≥ 0, (q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0) τ−→r (q1, q

′
1) τn−1−−−→ (q, q′)]

∧ q0
τ−→ q1 ∧ r(τ) τ−→ q′1 ∧ q′1 = finalr(τ)

⇒ (∗ Logical reasoning, fsclean property, q′1 = finalr(τ) : n = 1 ∗)
q0

τ−→ q ∧ r(τ) τ−→ q′ ∧ q′ = finalr(τ)
2

189

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

Lemma B.2.14 Let λ ∈ Lr , (q0, q
′
0), (q, q′) ∈ Qr with q′0 ∈ Final

fsclean[(q0, q
′
0)

λ
=⇒r (q, q′)]⇒ ∃µ ∈ L : q0

µ−→ q ∧ r(µ)
λ

=⇒ q′

2

Proof
fsclean[(q0, q

′
0)

λ
=⇒r (q, q′)]

⇒ (∗ Definition =⇒ ∗)
∃(q1, q

′
1), (q2, q

′
2) ∈ Qr :

fsclean[(q0, q
′
0)

ε
=⇒r (q1, q

′
1) λ−→r (q2, q

′
2)

ε
=⇒r (q, q′)]

According to Lemma B.2.13, either (q0, q
′
0) = (q1, q

′
1) or q′1 = finalr(τ).

The later leads to a contradiction, because of the fsclean property.

⇒ (∗ Lemma B.2.13 ∗)
∃(q2, q

′
2) ∈ Qr : fsclean[(q0, q

′
0) λ−→r (q2, q

′
2)

ε
=⇒r (q, q′)]

⇒ (∗ Definition 5.2.1 (LTS refinement T1) ∗)
∃(q2, q

′
2) ∈ Qr : fsclean[(q0, q

′
0) λ−→r (q2, q

′
2)

ε
=⇒r (q, q′)]

∧∃µ ∈ L : q0
µ−→ q2 ∧ r(µ) λ−→ q′2

⇒ (∗ Lemma B.2.12 ∗)
∃(q2, q

′
2) ∈ Qr , µ ∈ L : q0

µ−→ q2 ∧ r(µ) λ−→ q′2
∧∃µ′ ∈ Lτ : q′2

ε
=⇒

r(µ′)q
′ ∧ q2 = q

⇒ (∗ Definition 5.2.1: states of refinement transition systems
are unique ∗)

∃(q2, q
′
2) ∈ Qr ,∃µ ∈ L : q0

µ−→ q2 ∧ r(µ) λ−→
r(µ)

q′2
ε

=⇒
r(µ)

q′

∧ q2 = q
⇒ (∗ Definition =⇒ with logical reasoning: q2 = q ∗)
∃µ ∈ L : q0

µ−→ q ∧ r(µ)
λ

=⇒
r(µ)

q
2

Lemma B.2.15 Let (q0, q
′
0), (q, q′) ∈ Qr with q′0 ∈ Final

fsclean[(q0, q
′
0)

δ
=⇒r (q, q′)]⇒ q0

δ−→ q ∧ (q0, q
′
0) = (q, q′)

2

Proof
fsclean[(q0, q

′
0)

δ
=⇒r (q, q′)]

⇒ (∗ Definition =⇒ ∗)
∃(q1, q

′
1), (q2, q

′
2) ∈ Qr :

fsclean[(q0, q
′
0)

ε
=⇒r (q1, q

′
1) δ−→r (q2, q

′
2)

ε
=⇒r (q, q′)]

According to Lemma B.2.13, either (q0, q
′
0) = (q1, q

′
1) or q′1 = finalr(τ).

The last case leads to a contradiction, because of the fsclean property.

190

B.2. Proofs Section 5.2: LTS refinement

⇒ (∗ Lemma B.2.13 ∗)
∃(q2, q

′
2) ∈ Qr : fsclean[(q0, q

′
0) δ−→r (q2, q

′
2)

ε
=⇒r (q, q′)]

⇒ (∗ Definition δ ∗)
∃(q2, q

′
2) ∈ Qr : fsclean[(q0, q

′
0) δ−→r (q2, q

′
2)

ε
=⇒r (q, q′)]

∧ (q0, q
′
0) = (q2, q

′
2)∧∀λ ∈ Urτ : (q0, q

′
0) λ−−→/ r

⇒ (∗ Definition B.2.8 (fsclean):
(q′0 = q′2 ∈ Final, therefore (q2, q

′
2) = (q, q′) ∗)

(q0, q
′
0) = (q, q′)∧∀λ ∈ Urτ : (q0, q

′
0) λ−−→/ r

⇒ (∗ Definition 5.2.1 (LTS refinement T1),
Definition 4.6.1: constraints 1,2,3 ∗)

(q0, q
′
0) = (q, q′)∧∀λ′ ∈ Uτ : q0

λ′−−→/
⇒ (∗ Definition δ ∗)

(q0, q
′
0) = (q, q′)∧ q0

δ−→ q0

⇒ (∗ Logical reasoning ∗)
q0

δ−→ q ∧ (q0, q
′
0) = (q, q′)

2

Lemma B.2.16 Let σ ∈ L∗rδ\{ε, δ}, (q1, q
′
1), (q, q′) ∈ Qr with q′1 ∈ Final

fsclean[(q1, q
′
1)

σ
=⇒r (q, q′)]⇒ ∃λ ∈ Lτδ : q1

λ−→ q ∧ r(λ)
σ

=⇒ q′

2

Proof This follows directly from the way we construct refined transition
systems: Definition 5.2.1. There are two rules to add transitions in the
refined system: T1 and T2. T1 is only applicable for the first transition of
the refinement transition system (when q′1 ∈ Final). For all other transitions
we are sure that the second part of the state tuple is not in Final because of
the fsclean property (Definition B.2.8). Therefore T2 is applicable for those
transitions.

Suppose σ = λ1·σ1 for some λ1 ∈ Lrδ and σ1 ∈ L∗rδ. We identify the
following cases:

• λ1 ∈ L
fsclean[(q1, q

′
1)

λ1·σ1====⇒r (q, q′)]
⇒ (∗ Definition =⇒ ∗)
∃(q2, q

′
2) ∈ Qr : fsclean[(q1, q

′
1)

λ1==⇒r (q2, q
′
2)

σ1==⇒r (q, q′)]
⇒ (∗ Lemma B.2.14 ∗)
∃(q2, q

′
2) ∈ Qr : fsclean[(q1, q

′
1)

λ1==⇒r (q2, q
′
2)

σ1==⇒r (q, q′)]

∧∃µ ∈ L : q1
µ−→ q2 ∧ r(µ)

λ1==⇒
r(µ)

q′2

In case σ2 = ε we are done here (q2 = q). Otherwise we continue as
follows:

191

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Lemma B.2.12, q′2 /∈ Final because of the fsclean property ∗)
∃(q2, q

′
2) ∈ Qr : fsclean[(q1, q

′
1)

λ1==⇒r (q2, q
′
2)

σ1==⇒r (q, q′)]

∧∃µ ∈ L : q1
µ−→ q2 ∧ r(µ)

λ1==⇒
r(µ)

q′2 ∧ q2 = q

∧∃µ′ ∈ Lτ : q′2
σ1==⇒

r(µ′)q
′

⇒ (∗ Logical reasoning ∗)
∃(q, q′2) ∈ Qr : fsclean[(q1, q

′
1)

λ1==⇒r (q, q′2)
σ1==⇒r (q, q′)]

∧∃µ ∈ L : q1
µ−→ q ∧ r(µ)

λ1==⇒
r(µ)

q′2 ∧∃µ′ ∈ Lτ : q′2
σ1==⇒

r(µ′)q
′

⇒ (∗ Definition 5.2.1 (LTS refinement): state sets of refinement
transition systems are unique (so µ = µ′) ∗)

∃(q, q′2) ∈ Qr : fsclean[(q1, q
′
1)

λ1==⇒r (q, q′2)
σ1==⇒r (q, q′)]

∧∃µ ∈ L : q1
µ−→ q ∧ r(µ)

λ1==⇒
r(µ)

q′2
σ1==⇒

r(µ)
q′

⇒ (∗ Definition =⇒ ∗)
∧∃µ ∈ L : q1

µ−→ q ∧ r(µ)
λ1·σ1====⇒

r(µ)
q′

• λ1 = δ. This case implies that σ = δ and that case is excluded from
the lemma.

fsclean[(q0, q
′
0)

δ·σ1===⇒ (q, q′)]
⇒ (∗ Definition =⇒ ∗)
∃(q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0)

δ
=⇒ (q1, q

′
1)

σ1==⇒ (q, q′)]
⇒ (∗ Lemma B.2.15 ∗)
∃(q1, q

′
1) ∈ Qr : fsclean[(q0, q

′
0)

δ
=⇒ (q1, q

′
1)

σ1==⇒ (q, q′)]

∧ q0
δ−→ q1 ∧ (q0, q

′
0) = (q1, q

′
1)

⇒ (∗ fsclean property implies that σ1 = ε and (q1, q
′
1) = (q, q′) ∗)

fsclean[(q0, q
′
0)

δ
=⇒ (q, q′)]

2

So far the lemmas implied properties of the abstract system, based on
properties of the refined system. The following lemmas are the other way
around. They are the building blocks for the proof of Proposition B.2.21
which expresses a relation between traces in the abstract system and the
related traces in the refined system.

Lemma B.2.17 Let q, q1 ∈ Q, where Q is the set of states of an arbitrary
transition system.

q
ε

=⇒ q1 ⇒ ∀q′ ∈ Final : (∃q′1 ∈ Final : (q, q′)
ε

=⇒r (q1, q
′
1))

2

Proof We prove the following stronger statement. Let n ≥ 0.

q τn−−→ q1 ⇒ ∀q′ ∈ Final : (∃q′1 ∈ Final : (q, q′) τn−−→r (q1, q
′
1)) (B.1)

192

B.2. Proofs Section 5.2: LTS refinement

Proof by induction on n.

Basic step: n = 0.

q τ0−−→ q1

⇒ (∗ Definition −→ ∗)
q τ0−−→ q1 ∧ q = q1

⇒ (∗ Definition −→ ∗)
q = q1 ∧∀q′ ∈ Final : (q, q′) τ0−−→r (q, q′)

⇒ (∗ Logical reasoning ∗)
∀q′ ∈ Final : (∃q′1 ∈ Final : (q, q′) τ0−−→r (q1, q

′
1))

Induction step: Assume that the lemma holds for 0 ≤ j < n. Let σ =
τ j ·τ .

q τ j ·τ−−−→ q1

⇒ (∗ Definition −→ ∗)
∃q2 ∈ Q : q τ j−−→ q2

τ−→ q1

⇒ (∗ Induction ∗)
∃q2 ∈ Q : q τ j−−→ q2

τ−→ q1 ∧∀q′ ∈ Final : (∃q′2 ∈ Final :

(q, q′) τ j−−→r (q2, q
′
2))

⇒ (∗ Definition 5.2.1 (LTS refinement) T1 ∗)
∃q2 ∈ Q : q τ j−−→ q2

τ−→ q1 ∧∀q′ ∈ Final : (∃q′2 ∈ Final :

(q, q′) τ j−−→r (q2, q
′
2) τ−→r (q1, finalτ))

⇒ (∗ Definition −→ ∗)
∀q′ ∈ Final : (q, q′) τ j ·τ−−−→r (q1, finalτ)

⇒ (∗ Logical reasoning ∗)
∀q′ ∈ Final : (∃q′1 ∈ Final : (q, q′) τ j ·τ−−−→r (q1, q

′
1)

2

Lemma B.2.18 Let q, q1 ∈ Q,λ ∈ Lδ, where Q is the set of states of an
arbitrary transition system.

q
λ

=⇒ q1 ⇒ ∀q′ ∈ Final, σ ∈ λ[r]rc : (∃q1 ∈ Final : (q, q′)
σ

=⇒r (q1, q
′
1))

2

Proof We identify the following cases:

• λ ∈ L.

q
λ

=⇒ q1

⇒ (∗ Definition =⇒ ∗)
∃q2, q3 ∈ Q : q

ε
=⇒ q2

λ−→ q3
ε

=⇒ q1

⇒ (∗ Lemma B.2.17 ∗)
∃q2, q3 ∈ Q : q

ε
=⇒ q2

λ−→ q3
ε

=⇒ q1 ∧∀q′, q′3 ∈ Final :
(∃q′2, q′1 ∈ Final : (q, q′)

ε
=⇒r (q2, q

′
2)∧ (q3, q

′
3)

ε
=⇒r (q1, q

′
1))

193

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Lemma B.2.6 (λ 6= δ) ∗)
∃q2, q3 ∈ Q : q

ε
=⇒ q2

λ−→ q3
ε

=⇒ q1 ∧∀q′, q′3 ∈ Final :
(∃q′2, q′1 ∈ Final : (q, q′)

ε
=⇒r (q2, q

′
2)∧ (q3, q

′
3)

ε
=⇒r (q1, q

′
1))

∧∀q′4 ∈ Final, σ ∈ λ[r]rc : (q2, q
′
4)

σ
=⇒r (q3, finalr(λ))

⇒ (∗ Logical reasoning ∗)
∀q′ ∈ Final, σ ∈ λ[r]rc :
(∃q′1, q′2 ∈ Final : (q, q′)

ε
=⇒r (q2, q

′
2)

σ
=⇒r (q3, finalr(λ))

ε
=⇒r (q1, q

′
1))

⇒ (∗ Definition =⇒ ∗)
∀q′ ∈ Final, σ ∈ λ[r]rc : (∃q′1 ∈ Final : (q, q′)

σ
=⇒r (q1, q

′
1))

• λ = δ.

q
δ

=⇒ q1

⇒ (∗ Definition =⇒ ∗)
∃q2, q3 ∈ Q : q

ε
=⇒ q2

δ−→ q3
ε

=⇒ q1

⇒ (∗ Definition δ ∗)
∃q2 ∈ Q : q

ε
=⇒ q2

δ−→ q2
ε

=⇒ q1 ∧∀µ ∈ Uτ : q2
µ−−→/

⇒ (∗ Lemma B.2.17 ∗)
∃q2 ∈ Q : q

ε
=⇒ q2

δ−→ q2
ε

=⇒ q1 ∧∀µ ∈ Uτ : q2
µ−−→/

∧∀q′, q′3 ∈ Final : (∃q′1, q′2 ∈ Final : (q, q′)
ε

=⇒r (q2, q
′
2)

∧ (q2, q
′
3)

ε
=⇒r (q1, q

′
1))

⇒ (∗ Definition 4.6.1 (Constraints on the refinement function) ∗)
∃q2 ∈ Q : q

ε
=⇒ q2

δ−→ q2
ε

=⇒ q1 ∧∀µ ∈ Uτ : q2
µ−−→/

∧∀q′, q′3 ∈ Final : (∃q′1, q′2 ∈ Final : (q, q′)
ε

=⇒r (q2, q
′
2)

∧ (q2, q
′
3)

ε
=⇒r (q1, q

′
1))

⇒ (∗ Definition 5.2.1 (LTS refinement T1)
and Definition 4.6.1 (constraints 1, 2, 3) ∗)

∀q′, q′3 ∈ Final : (∃q′1, q′2 ∈ Final : (q, q′)
ε

=⇒r (q2, q
′
2)

∧ (q2, q
′
3)

ε
=⇒r (q1, q

′
1))∧∀q′4 ∈ Final, µ′ ∈ Urτ : (q2, q

′
4) µ′−−→/ r

⇒ (∗ Definition δ ∗)
∀q′, q′3 ∈ Final : (∃q′1, q′2 ∈ Final : (q, q′)

ε
=⇒r (q2, q

′
2)

∧ (q2, q
′
3)

ε
=⇒r (q1, q

′
1))∧∀q′4 ∈ Final : (q2, q

′
4) δ−→r (q2, q

′
4)

⇒ (∗ Logical reasoning ∗)
∀q′ ∈ Final : (∃q′1, q′2 ∈ Final :

(q, q′)
ε

=⇒r (q2, q
′
2) δ−→r (q2, q

′
2)

ε
=⇒r (q1, q

′
1))

⇒ (∗ Definition =⇒ ∗)
∀q′ ∈ Final : (∃q′1 ∈ Final : (q, q′)

δ
=⇒r (q1, q

′
1))

⇒ (∗ Definition 5.3.3 ∗)
∀q′ ∈ Final, σ ∈ δ[r]rc : (∃q′1 ∈ Final : (q, q′)

σ
=⇒r (q1, q

′
1))

2

Lemma B.2.19 Let q, q1 ∈ Q, σ ∈ L∗δ , where Q is the set of states of an
arbitrary transition system.

q
σ

=⇒ q1 ⇒ ∀q′ ∈ Final, σ′ ∈ σ[r]rc : (∃q′1 ∈ Final : (q, q′)
σ′

==⇒r (q1, q
′
1))

194

B.2. Proofs Section 5.2: LTS refinement

2

Proof Proof by induction on the length of σ.

Basic step: σ = ε. This step follows from Lemma B.2.17 (ε[r] = {ε}).

Induction step: Let σ = σ1·λ with σ1 ∈ L∗δ and λ ∈ Lδ and assume that
the lemma holds for σ1.

q
σ1·λ===⇒ q1

⇒ (∗ Definition =⇒ ∗)
∃q2 ∈ Q : q

σ1==⇒ q2
λ

=⇒ q1

⇒ (∗ Induction ∗)
∃q2 ∈ Q : q

σ1==⇒ q2
λ

=⇒ q1 ∧∀q′ ∈ Final, σ′1 ∈ σ1[r]rc :
(∃q′2 ∈ Final : (q, q′)

σ′1==⇒r (q2, q
′
2))

⇒ (∗ Lemma B.2.18 ∗)
∃q2 ∈ Q : q

σ1==⇒ q2
λ

=⇒ q1 ∧∀q′ ∈ Final, σ′1 ∈ σ1[r]rc :
(∃q′2 ∈ Final : (q, q′)

σ′1==⇒r (q2, q
′
2))

∀q′3 ∈ Final, σ′2 ∈ λ[r]rc : (∃q′1 ∈ Final : (q2, q
′
3)

σ′2==⇒r (q1, q
′
1))

⇒ (∗ Logical reasoning ∗)
∃q2 ∈ Q : q

σ1==⇒ q2
λ

=⇒ q1 ∧∀q′ ∈ Final, σ′1 ∈ σ1[r]rc , σ
′
2 ∈ λ[r]rc :

(∃q′1q′2 ∈ Final : (q, q′)
σ′1==⇒r (q2, q

′
2)

σ′2==⇒r (q1, q
′
1))

⇒ (∗ Definition =⇒ ∗)
∀q′ ∈ Final, σ′1 ∈ σ1[r]rc , σ

′
2 ∈ λ[r]rc :

(∃q′1 ∈ Final : (q, q′)
σ′1·σ′2====⇒r (q1, q

′
1))

⇒ (∗ Lemma B.1.3 ∗)
∀q′ ∈ Final, σ′ ∈ (σ1·λ)[r]rc : (∃q′1 ∈ Final : (q, q′)

σ′
==⇒r (q1, q

′
1))

⇒ (∗ Premise: σ = σ1·λ ∗)
∀q′ ∈ Final, σ′ ∈ σ[r]rc : (∃q′1 ∈ Final : (q, q′)

σ′
==⇒r (q1, q

′
1))

2

Lemma B.2.20 Let q ∈ Q,λ ∈ L, where Q is the set of states of an
arbitrary transition system.

q
λ

=⇒ ⇒ ∀q′ ∈ Final, σ ∈ λ[r]inc : (q, q′)
σ

=⇒r

2

195

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

Proof
q

λ
=⇒ q1

⇒ (∗ Definition =⇒ ∗)
∃q1 ∈ Q : q

ε
=⇒ q1

λ−→
⇒ (∗ Lemma B.2.17 ∗)
∃q1 ∈ Q : q

ε
=⇒ q1

λ−→ ∧∀q′ ∈ Final : (∃q′1 ∈ Final : (q, q′)
ε

=⇒r (q1, q
′
1))

⇒ (∗ Lemma B.2.7 ∗)
∃q1 ∈ Q : q

ε
=⇒ q1

λ−→ ∧∀q′ ∈ Final : (∃q′1 ∈ Final : (q, q′)
ε

=⇒r (q1, q
′
1))

∧∀q′2 ∈ Final, σ ∈ λ[r]inc : (q1, q
′
2)

σ
=⇒r

⇒ (∗ Logical reasoning ∗)
∀q′ ∈ Final, σ ∈ λ[r]inc : (∃q′1 ∈ Final : (q, q′)

ε
=⇒r (q1, q

′
1)

σ
=⇒r)

⇒ (∗ Definition =⇒ ∗)
∀q′ ∈ Final, σ ∈ λ[r]inc : (q, q′)

σ
=⇒r

2

Proposition B.2.21 Let σ ∈ L∗δ

q
σ

=⇒ ⇒ ∀q′ ∈ Final, σ′ ∈ σ[r] : (q, q′)
σ′

==⇒r

2

Proof For completely refined traces (σ′ ∈ σ[r]rc) this lemma follows from
Lemma B.2.19. The remainder of the proof is for σ′ ∈ σ[r]inc .

Proof by induction on the length of σ.

Only if: The case for ε is vacuously true because ε[r]inc = ∅.

If: Suppose σ = σ1·λ with σ1 ∈ L∗δ and λ ∈ Lδ.

q
σ1·λ===⇒

⇒ (∗ Definition =⇒ ∗)
∃q1 ∈ Q : q

σ1==⇒ q1
λ

=⇒
⇒ (∗ Lemma B.2.19 ∗)
∃q1 ∈ Q : q

σ1==⇒ q1
λ

=⇒
∧∀q′ ∈ Final, σ′1 ∈ σ1[r]rc : (∃q′1 ∈ Final : (q, q′)

σ′1==⇒r (q1, q
′
1))

⇒ (∗ Lemma B.2.20 ∗)
∃q1 ∈ Q : q

σ1==⇒ q1
λ

=⇒
∧∀q′ ∈ Final, σ′1 ∈ σ1[r]rc : (∃q′1 ∈ Final : (q, q′)

σ′1==⇒r (q1, q
′
1))

∧∀q′3 ∈ Final, σ′2 ∈ λ[r]inc : (q1, q
′
3)

σ′2==⇒r

In case λ = δ, we have δ[r]inc = ∅ and we are done. Otherwise we
continue as follows:

196

B.2. Proofs Section 5.2: LTS refinement

⇒ (∗ Logical reasoning ∗)
∃q1 ∈ Q : q

σ1==⇒ q1
λ

=⇒ ∧∀q′ ∈ Final, σ′1 ∈ σ1[r]rc , σ
′
2 ∈ λ[r]inc :

(∃q′1 ∈ Final : (q, q′)
σ′1==⇒r (q1, q

′
1)

σ′2==⇒r)
⇒ (∗ Definition =⇒ ∗)
∀q′ ∈ Final, σ′1 ∈ σ1[r]rc , σ

′
2 ∈ λ[r]inc : (q, q′)

σ′1·σ′2====⇒r

⇒ (∗ Lemma B.1.4 ∗)
∀q′ ∈ Final, σ′ ∈ (σ1·λ)[r] : (q, q′)

σ′
==⇒r

⇒ (∗ Premise: σ = σ1·λ ∗)
∀q′ ∈ Final, σ′ ∈ σ[r] : (q, q′)

σ′
==⇒r

2

Theorem 5.3.12 Let s ∈ LTS(I, U), L = I ∪ U, r : Lτ → FLTS(I ′, U ′)
with I ′, U ′ ⊆ L.

Straces(s)[r] = Straces(s[r])

2

Proof

Only if: Let σ′ ∈ Straces(s) such that σ ∈ σ′[r]

⇒ (∗ Definition Straces ∗)
starts

σ′
==⇒

⇒ (∗ Proposition B.2.21 ∗)
∀q′ ∈ Final, σ′′ ∈ σ′[r] : (starts, q

′)
σ′′

==⇒r

⇒ (∗ Premise: σ ∈ σ′[r] ∗)
∀q′ ∈ Final : (starts, q

′)
σ

=⇒r

⇒ (∗ X ∈ Final ∗)
(starts,X)

σ
=⇒r

⇒ (∗ (starts,X) = starts[r] ∗)
s[r]

σ
=⇒r

⇒ (∗ Definition Straces ∗)
σ ∈ Straces(s[r])

If: σ ∈ Straces(s[r]). We first split the trace σ into sub traces, in such a
way that every sub trace ends in a state pair where the second element
is a final state of a refinement transition system. We split σ exactly at
the places where it encounters a state with a final state as the second
element of its state pair. For the record, we do not split on empty
traces where the start and end state of the transition are the same,
i.e., empty traces that consist of zero τ steps. This means that in
cases with an empty trace only the second part of the or-clause of the
implication of Lemma B.2.13 holds.

197

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

σ ∈ Straces(s[r])
⇒ (∗ Definition Straces ∗)
∃(q, q′) ∈ Qr : s[r]

σ
=⇒r (q, q′)

⇒ (∗ Definition =⇒ and Definition 5.2.1 ∗)
∃n ≥ 0, σ1, . . . , σn ∈ L∗rδ, q1, . . . , qn−1 ∈ Q, q′1, . . . , q′n−1 ∈ Final :
σ = σ1 · · ·σn ∧ s[r]

σ1==⇒r (q1, q
′
1) · · · (qn−1, qn−1)

σn==⇒r (q, q′)
∧∀1 ≤ i < n− 1 : fsclean[(qi, q

′
i)

σi==⇒r (qi+1, q
′
i+1)]

∧ fsclean[s[r]
σ1==⇒r (q1, q

′
1)]∧ fsclean[(qn−1, q

′
n−1)

σn==⇒r (q, q′)]

To make the proof easier to read we rename q to qn and q′ to q′n and we
use (q0, q

′
0) as the start state of s[r]. We identify the following cases:

σ = ε

q0
ε

=⇒
⇒ (∗ Definition Straces, premise: q0 is start state of s ∗)

ε ∈ Straces(s)
⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)

ε ∈ Straces(s)[r]

σ = δ.

The δ action can have zero or more ε steps before and after it. Suppose
that σj = δ for some 1 ≤ j ≤ n.

∃n ≥ 0, σ1, . . . , σn ∈ L∗rδ, q1, . . . , qn−1 ∈ Q, q′1, . . . , q′n−1 ∈ Final :
σ = σ1 · · ·σn ∧ (q0, q

′
0)

σ1==⇒r (q1, q
′
1) · · · (qn−1, q

′
n−1)

σn==⇒r (qn, q
′
n)

∧∀0 ≤ i < n : fsclean[(qi, q
′
i)

σi+1===⇒r (qi+1, qi+1)]
∧∃1 ≤ j ≤ n : σj = δ

⇒ (∗ Lemma B.2.13 ∗)
∃n ≥ 0, σ1, . . . , σn ∈ L∗rδ, q1, . . . , qn−1 ∈ Q, q′1, . . . , q′n−1 ∈ Final :
σ = σ1 · · ·σn ∧ (q0, q

′
0)

σ1==⇒r (q1, q
′
1) · · · (qn−1, q

′
n−1)

σn==⇒r (qn, q
′
n)

∧∀0 ≤ i < n : fsclean[(qi, q
′
i)

σi+1===⇒r (qi+1, qi+1)]

∧∃1 ≤ j ≤ n : σj = δ ∧ q0
τ j−−→ qj ∧ qj+1

τn−j−1−−−−−→ qn
⇒ (∗ Lemma B.2.15 ∗)
∃n ≥ 0, q1, . . . , qn−1 ∈ Q :

∧∃1 ≤ j ≤ n : σj = δ ∧ q0
τ j−−→ qj ∧ qj+1

τn−j−1−−−−−→ qn ∧ qj δ−→ qj+1

⇒ (∗ Definition =⇒ ∗)
q0

δ
=⇒

⇒ (∗ Definition Straces ∗)
δ ∈ Straces(s)

⇒ (∗ Definition 5.3.5 ∗)
δ ∈ Straces(s)[r]

198

B.2. Proofs Section 5.2: LTS refinement

σ /∈ {ε, δ}

∃n ≥ 0, σ1, . . . , σn ∈ L∗rδ, q1, . . . , qn−1 ∈ Q, q′1, . . . , q′n−1 ∈ Final :
σ = σ1 · · ·σn ∧ (q0, q

′
0)

σ1==⇒r (q1, q
′
1) · · · (qn−1, q

′
n−1)

σn==⇒r (qn, q
′
n)

∧∀0 ≤ i < n : fsclean[(qi, q
′
i)

σi+1===⇒r (qi+1, qi+1)]
⇒ (∗ Lemma B.2.16 and Lemma B.2.15 ∗)
∃n ≥ 0, σ1, . . . σn ∈ L∗rδ, q1, . . . , qn−1 ∈ Q,λ1, . . . , λn ∈ Lδτ :

σ = σ1 · · ·σn ∧ q0
λ1−−→ q1 · · · qn−1

λn−−→ qn
∧∀1 ≤ i ≤ n : r(λi)

σi==⇒ q′i
⇒ (∗ Definition −→ ∗)
∃n ≥ 0, σ1, . . . σn ∈ L∗rδ, λ1, . . . , λn ∈ Lδτ : σ = σ1 · · ·σn
∧ q0

λ1···λn−−−−−→ qn ∧∀1 ≤ i ≤ n : r(λi)
σi==⇒ q′i

⇒ (∗ Logical reasoning: λi may be τ , q0 is the start state of s,
we use Definition 2.3.5 for trace projection. ∗)

∃n ≥ 0, σ1, . . . , σn ∈ L∗rδ, λ1, . . . , λn ∈ Lδτ : σ = σ1 · · ·σn
∧∀1 ≤ i ≤ n : r(λi)

σi==⇒ q′i ∧ s
(λ1···λn)�Lδ========⇒

At this point we identify the following cases.

• q′n ∈ Final

⇒ (∗ Definition 5.3.1 (TXStraces) ∗)
∃n ≥ 0, σ1, . . . , σn ∈ L∗rδ, λ1, . . . , λn ∈ Lδτ : σ = σ1 · · ·σn
∧ s λ1···λn)�Lδ========⇒ ∧∀1 ≤ i ≤ n : σi ∈ TXStraces(r(λi))

⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)
∃n ≥ 0, λ1, . . . , λn ∈ Lδτ : s

(λ1···λn)�Lδ========⇒
∧σ ∈ ((λ1 · · ·λn)�Lδ)[r]

⇒ (∗ Logical reasoning using Definition 2.3.5 (projection) ∗)
∃σ′ ∈ L∗δ : s

σ′
==⇒ ∧σ ∈ σ′[r]

⇒ (∗ Definition Straces ∗)
∃σ′ ∈ Straces(s) : σ ∈ σ′[r]

⇒ (∗ Logical reasoning ∗)
σ ∈ Straces(s)[r]

• q′n /∈ Final

⇒ (∗ Definition 5.3.2 (XStraces) ∗)
∃n ≥ 0, σ1, . . . , σn ∈ L∗rδ, λ1, . . . , λn ∈ Lδτ : σ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧σn ∈ XStraces(r(λn))

⇒ (∗ Definition 5.3.4 (incomplete trace refinement) ∗)
∃n ≥ 0, λ1, . . . , λn ∈ Lδτ : s

(λ1···λn)�Lδ========⇒
∧σ ∈ ((λ1 · · ·λn)�Lδ)[r]

199

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Logical reasoning using Definition 2.3.5 (projection) ∗)
∃σ′ ∈ L∗δ : s

σ′
==⇒ ∧σ ∈ σ′[r]

⇒ (∗ Definition Straces ∗)
∃σ′ ∈ Straces(s) : σ ∈ σ′[r]

⇒ (∗ Logical reasoning ∗)
σ ∈ Straces(s)[r]

2

B.3 Proofs Section 5.4: ioco with refinement

Proposition 5.4.6

out(s[r] after σ) = outrc(s, σ, r) ∪ out inc(s, σ, r)

2

Proof

⊇ We prove that x ∈ outrc(s, σ, r)∪ out inc(s, σ, r)⇒ x ∈ out(s[r] after σ).
We identify the following cases:

x ∈ outrc(s, σ, r) and x 6= δ. Because x 6= δ we can drop the part
about δ in Definition 5.4.1:

⋃
σ′∈Σ out(s after σ′) ∩ {δ}.

⇒ (∗ Definition 5.4.1 (outrc) ∗)
∃σ′ ∈ σ〈r〉rc , µ ∈ out(s after σ′)\{δ} : σ′ ∈ Straces(s)
∧x ∈ out(r(µ) after ε)\{δ}

⇒ (∗ Definition Straces ∗)
∃σ′ ∈ σ〈r〉rc , µ ∈ U : x ∈ out(r(µ) after ε)\{δ}
∧σ′·µ ∈ Straces(s)

⇒ (∗ Definition 5.3.5 (trace refinement) ∗)
∃σ′ ∈ σ〈r〉rc , µ ∈ U : x ∈ µ[r]∧σ′·µ ∈ Straces(s)

⇒ (∗ Lemma B.1.1 ∗)
∃σ′ ∈ σ〈r〉rc , µ ∈ U : x ∈ µ[r]
∧σ′·µ ∈ Straces(s)∧σ ∈ σ′[r]rc

⇒ (∗ Lemma B.1.5 ∗)
∃σ′ ∈ σ〈r〉rc , µ ∈ U : σ′·µ ∈ Straces(s)∧σ·x ∈ (σ′·µ)[r]

⇒ (∗ Set operations ∗)
σ·x ∈ Straces(s)[r]

⇒ (∗ Theorem 5.3.12 ∗)
σ·x ∈ Straces(s[r])

⇒ (∗ Definitions out and after ∗)
x ∈ out(s[r] after σ)

200

B.3. Proofs Section 5.4: ioco with refinement

x ∈ outrc(s, σ, r) and x = δ

⇒ (∗ Definition 5.4.1 (outrc) ∗)
∃σ′ ∈ σ〈r〉rc : σ′ ∈ Straces(s)∧ δ ∈ out(s after σ′)

⇒ (∗ Definition Straces ∗)
∃σ′ ∈ σ〈r〉rc : σ′·δ ∈ Straces(s)

⇒ (∗ Lemma B.1.2 ∗)
∃σ′ ∈ σ〈r〉rc : σ′·δ ∈ Straces(s)∧σ ∈ σ′[r]rc

⇒ (∗ Definition 5.3.3 (trace refinement) ∗)
∃σ′ ∈ σ〈r〉rc : σ′·δ ∈ Straces(s)∧σ·δ ∈ (σ′·δ)[r]rc

⇒ (∗ Set operations ∗)
σ·δ ∈ Straces(s)[r]

⇒ (∗ Theorem 5.3.12 ∗)
σ·δ ∈ Straces(s[r])

⇒ (∗ Definition out and after ∗)
δ ∈ out(s[r] after σ)

x ∈ out inc(s, σ, r)

⇒ (∗ Definition 5.4.3 (out inc) ∗)
∃σ1 · · ·σn ∈ Lrδ∗ , λ1 · · ·λn ∈ Lδ : σ = σ1 · · ·σn
∧ (λ1 · · ·λn) ∈ Straces(s)∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧σn ∈ XStraces(r(λn))∧x ∈ out(r(λn) after σn)

⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)
∃σ1 · · ·σn ∈ L∗rδ, λ1 · · ·λn ∈ Lδ : σ = σ1 · · ·σn
∧ (λ1 · · ·λn) ∈ Straces(s)∧σ1 · · ·σn−1 ∈ (λ1 · · ·λn−1)[r]rc
∧σn ∈ XStraces(r(λn))∧x ∈ out(r(λn) after σn)

⇒ (∗ Definition 5.3.1 (TXStraces), Definition 5.3.2 (XStraces) ∗)
∃σ1 · · ·σn ∈ L∗rδ, λ1 · · ·λn ∈ Lδ : σ = σ1 · · ·σn
∧ (λ1 · · ·λn) ∈ Straces(s)∧σ1 · · ·σn−1 ∈ (λ1 · · ·λn−1)[r]rc
∧σn·x ∈ (XStraces(r(λn)) ∪ TXStraces(r(λn)))

⇒ (∗ Definition 5.3.3, Definition 5.3.4, Definition 5.3.5
complete, incomplete and general trace refinement) ∗)

∃σ1 · · ·σn ∈ L∗rδ, λ1 · · ·λn ∈ Lδ : σ = σ1 · · ·σn
∧ (λ1 · · ·λn) ∈ Straces(s)∧σ1 · · ·σn−1 ∈ (λ1 · · ·λn−1)[r]rc
∧σn·x ∈ λn[r]

⇒ (∗ Lemma B.1.5 ∗)
∃σ1 · · ·σn ∈ L∗rδ, λ1 · · ·λn ∈ Lδ : σ = σ1 · · ·σn
∧ (λ1 · · ·λn) ∈ Straces(s)∧ (σ1 · · ·σn·x) ∈ (λ1 · · ·λn)[r]

⇒ (∗ Logical reasoning ∗)
∃(λ1 · · ·λn) ∈ Straces(s) : σ·x ∈ (λ1 · · ·λn)[r]

⇒ (∗ Set operations ∗)
σ·x ∈ Straces(s)[r]

201

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Theorem 5.3.12 ∗)
σ·x ∈ Straces(s[r])

⇒ (∗ Definition out and after ∗)
x ∈ out(s[r] after σ)

⊆ We prove that x ∈ out(s[r] after σ)⇒ x ∈ outrc(s, σ, r)∪ out inc(s, σ, r).

x ∈ out(s[r] after σ)
⇒ (∗ Definition out and after ∗)

σ·x ∈ Straces(s[r])∧x ∈ Urδ

⇒ (∗ Theorem 5.3.12 ∗)
σ·x ∈ Straces(s)[r]∧x ∈ Urδ

⇒ (∗ Logical reasoning ∗)
∃σ′ ∈ Straces(s) : σ·x ∈ σ′[r]∧x ∈ Urδ

To keep the proof concise, we assume that σ′ = λ1 · · ·λn for some
n ≥ 0 and ∀1 ≤ i ≤ n : λi ∈ Lδ, so λ1 · · ·λn ∈ Straces(s)

⇒ (∗ Definition 5.3.3 (complete trace refinement)
and Definition 5.3.4 (incomplete trace refinement) ∗)

∃σ1, . . . , σn ∈ L∗rδ : σ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧ (σn·x ∈ TXStraces(r(λn))∨σn·x ∈ XStraces(r(λn)))

We identify the following cases.
- σ is completely refined.

⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)
∃σ1, . . . , σn ∈ L∗rδ : σ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧ (σn·x ∈ TXStraces(r(λn))∨σn·x ∈ XStraces(r(λn)))∧σn = ε

⇒ (∗ Logical reasoning ∗)
∃σ1, . . . , σn−1 ∈ L∗rδ : σ = σ1 · · ·σn−1

∧∀1 ≤ i ≤ n− 1 : σi ∈ TXStraces(r(λi))
∧ (x ∈ TXStraces(r(λn))∨x ∈ XStraces(r(λn)))

We identify the following cases:

• x ∈ Ur

⇒ (∗ Definitions out and after with logical reasoning ∗)
∃σ1, . . . , σn−1 ∈ L∗rδ : σ = σ1 · · ·σn−1 ∧∀1 ≤ i ≤ n− 1 :
σi ∈ TXStraces(r(λi))∧ (x ∈ TXStraces(r(λn))
∨x ∈ XStraces(r(λn)))∧x ∈ out(r(λn) after ε)\{δ}

⇒ (∗ Definition 4.6.1 1,2,3 (only refinements of an output
action start with outputs) ∗)

∃σ1, . . . , σn−1 ∈ L∗rδ : σ = σ1 · · ·σn−1

∧∀1 ≤ i ≤ n− 1 : σi ∈ TXStraces(r(λi))
∧x ∈ out(r(λn) after ε)\{δ}∧λn ∈ U

202

B.3. Proofs Section 5.4: ioco with refinement

Note that the case λn = δ is ruled out by the premise that x ∈ Ur .
In case λn = δ we get x ∈ TXStraces(r(δ))∨x ∈ XStraces(r(δ)),
which implies x ∈ {δ}.
⇒ (∗ Definitions out and after with λ1 · · ·λn ∈ Straces(s) ∗)
∃σ1, . . . , σn−1 ∈ L∗rδ : σ = σ1 · · ·σn−1 ∧∀1 ≤ i ≤ n− 1 :
σi ∈ TXStraces(r(λi))∧x ∈ out(r(λn) after ε)\{δ}
∧λn ∈ out(s after λ1 · · ·λn−1)\{δ}

⇒ (∗ Definition 5.3.7 (complete trace contraction) ∗)
x ∈ out(r(λn) after ε)\{δ}
∧λn ∈ out(s after λ1 · · ·λn−1)\{δ}∧λ1 · · ·λn−1 ∈ σ〈r〉rc

⇒ (∗ Definition 5.4.1 ∗)
x ∈ outrc(s, σ, r)

• x = δ. Because TXStraces(δ) = {δ} and there is no other way
to obtain δ as the first label of XStraces or TXStraces, we know
that λn = δ.

⇒ (∗ Definition 5.3.1 (TXStraces), Definition 5.3.2 (XStraces)
and TXStraces(r(δ)) = {δ} ∗)

∃σ1, . . . , σn−1 ∈ Lrδ : σ = σ1 · · ·σn−1 ∧∀1 ≤ i ≤ n− 1 :
σi ∈ TXStraces(r(λi))∧x ∈ TXStraces(r(λn))∧λn = δ

⇒ (∗ Definitions out and after, note that
λ1 · · ·λn ∈ Straces(s) ∗)

∃σ1, . . . , σn−1 ∈ Lrδ : σ = σ1 · · ·σn−1 ∧∀1 ≤ i ≤ n− 1 :
σi ∈ TXStraces(r(λi))∧x ∈ TXStraces(r(λn))∧λn = δ
∧λn ∈ out(s after λ1 · · ·λn−1)

⇒ (∗ Definition 5.3.7 (complete trace contraction) ∗)
λn = δ ∧λn ∈ out(s after λ1 · · ·λn−1)
∧λ1 · · ·λn−1 ∈ σ〈r〉rc

⇒ (∗ Definition 5.4.1, note that x = δ ∗)
x ∈ outrc(s, σ, r)

- σ is incompletely refined. In this case we know that σn 6= ε (using
Definition 5.3.4 (incomplete trace refinement)).

⇒ (∗ Premise: σ is incompletely refined and
Definition 5.3.4 (incomplete trace refinement) ∗)

∃σ1, . . . , σn ∈ Lrδ : σ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧ (σn·x ∈ TXStraces(r(λn))∨σn·x ∈ XStraces(r(λn)))
∧σn ∈ XStraces(r(λn))∧σn 6= ε

⇒ (∗ Definition 5.3.2 (XStraces) ε is explicitly excluded. ∗)
∃σ1, . . . , σn ∈ Lrδ : σ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧ (σn·x ∈ TXStraces(r(λn))∨σn·x ∈ XStraces(r(λn)))
∧σn ∈ XStraces(r(λn))∧σn 6= ε

203

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Definition 5.3.1 (TXStraces), Definition 5.3.2 (XStraces) ∗)
∃σ1, . . . , σn ∈ Lrδ : σ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧σn ∈ XStraces(r(λn))∧σ 6= ε∧ r(λn)

σn·x===⇒
⇒ (∗ Definition out and after, note that x ∈ Urδ ∗)
∃σ1, . . . , σn ∈ Lrδ : σ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))
∧σn ∈ XStraces(r(λn))∧σ 6= ε∧x ∈ out(r(λn) after σn)

⇒ (∗ Premise: λ1 · · ·λn ∈ Straces(s) ∗)
∃σ1, . . . , σn ∈ Lrδ : σ = σ1 · · ·σn
∧∀1 ≤ i < n : σi ∈ TXStraces(r(λi))∧σn ∈ XStraces(r(λn))
∧σ 6= ε∧x ∈ out(r(λn) after σn)∧λ1 · · ·λn ∈ Straces(s)

⇒ (∗ Definition 5.4.3 ∗)
σ ∈ out inc(s, σ, r)

2

Theorem 5.4.7 Let s ∈ LTS(I, U), i ∈ IOTS(I ′, U ′) with (I ′ ∪ U ′) ∈ Lr .

i iocor s⇔ i ioco s[r]

2

Proof We immediately expand the definitions of ioco and iocor :
∀σ ∈ Straces(s)[r] : out(i after σ) ⊆ outrc(s, σ, r) ∪ out inc(s, σ, r) ⇔ ∀σ′ ∈
Straces(s[r]) : out(i after σ′) ⊆ out(s[r] after σ′)

This follows from Theorem 5.3.12 and Proposition 5.4.6.

2

B.4 Proofs Section 5.5: Test-case refinement

The refinement function has the signature: r : Lτ → FLTS. Because the
refinement function is used almost everywhere in this document, we have
chosen to omit it in the proofs of this section.

In order to proof Theorem 5.5.14 and Theorem 5.5.18 we have made
several lemmas to help us. We start with several that deal with the relation
between mini-tests and refinement transition systems. Next we treat several
lemmas that proof relations between abstract and refined test cases.

The following lemma shows that for a trace of a refinement transition
system, we can generate a mini-test that can perform the same trace.

Lemma B.4.1 Let λ ∈ Lδ, σ ∈ L∗rδ

r(λ)
σ

=⇒ implies ∃m ∈ MT (r(λ)) : m σ−→

2

204

B.4. Proofs Section 5.5: Test-case refinement

Proof We strengthen the proof obligation in order to make the proof pos-
sible. We denote the set of mini-tests generated from Definition 5.5.2 with
state set S as TestGenmt(S). S refers to the set of states in the mini-test
generation algorithm (steps 3, 4 and 5 in Definition 5.5.2). Let q ∈ Qr(λ)

r(λ)
σ

=⇒ q ⇒ ∃m ∈ MT (r(λ)), t ∈ TestGenmt(S after σ) : m σ−→ t (B.2)

∧ q ∈ (S after σ)

Proof by induction on the length of σ.

Basic step: σ = ε. Mini-tests do not have τ steps, therefore an ε transition
for the mini-test is always τ0.

r(λ)
ε

=⇒ q
⇒ (∗ Definition after, startr(λ) ∈ S ∗)

r(λ)
ε

=⇒ q ∧ q ∈ (S after ε)
⇒ (∗ Definition 5.5.2, we start with S = {startr(λ), ∗} ∗)
∃m ∈ MT (r(λ)), t ∈ TestGenmt(S after ε) : m τ0−−→ t
∧ q ∈ (S after ε)

Induction step: Let σ = σ1·λ with σ1 ∈ L∗rδ and λ ∈ Lrδ. Assume that
the lemma holds for σ1.

We identify the following cases:

• λ ∈ I
r(λ)

σ1·λ===⇒ q
⇒ (∗ Definition =⇒ ∗)
∃q1 ∈ Qr(λ) : r(λ)

σ1==⇒ q1
λ

=⇒ q

⇒ (∗ Induction ∗)
∃q1 ∈ Qr(λ) : r(λ)

σ1==⇒ q1
λ

=⇒ q ∧∃m ∈ MT (r(λ)),

t ∈ TestGenmt(S after σ1) : m σ1−−→ t∧ q1 ∈ (S after σ1)

⇒ (∗ Definition 5.5.2 (mini-test generation rule 3:
q ∈ (q1 after λ)) ∗)

∃m ∈ MT (r(λ)), t ∈ TestGenmt(S after σ1),

t′ ∈ TestGenmt(S after σ1·λ) : m σ1−−→ t λ−→ t′

∧ q ∈ (S after σ1·λ)
⇒ (∗ Definition −→ , logical reasoning ∗)
∃m ∈ MT (r(λ)), t′ ∈ TestGenmt(S after σ1·λ) : m σ1·λ−−−→ t′

∧ q ∈ (S after σ1·λ)
⇒ (∗ σ = σ1·λ, rename t′ to t ∗)
∃m ∈ MT (r(λ)), t ∈ TestGenmt(S after σ) : m σ−→ t
∧ q ∈ (S after σ)

205

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

• λ ∈ U
r(λ)

σ1·λ===⇒ q
⇒ (∗ Definition =⇒ ∗)
∃q1 ∈ Qr(λ) : r(λ)

σ1==⇒ q1
λ

=⇒ q

⇒ (∗ Induction ∗)
∃q1 ∈ Qr(λ) : r(λ)

σ1==⇒ q1
λ

=⇒ q ∧∃m ∈ MT (r(λ)),

t ∈ TestGenmt(S after σ1) : m σ1−−→ t∧ q1 ∈ (S after σ1)
⇒ (∗ Definition 5.5.2 (mini-test generation rule 4 and 5:

λ ∈ out(q1), q ∈ (q1 after λ)) ∗)
∃m ∈ MT (r(λ)), t ∈ TestGenmt(S after σ1),

t′ ∈ TestGenmt(S after σ1·λ) : m σ1−−→ t λ−→ t′

∧ q ∈ (S after σ1·λ)
⇒ (∗ Definition −→ , logical reasoning ∗)
∃m ∈ MT (r(λ)), t′ ∈ TestGenmt(S after σ1·λ) : m σ1·λ−−−→ t′

∧ q ∈ (S after σ1·λ)
⇒ (∗ σ = σ1·λ, rename t′ to t ∗)
∃m ∈ MT (r(λ)), t ∈ TestGenmt(S after σ) : m σ−→ t
∧ q ∈ (S after σ)

• λ = δ. This proof is analogous to the proof of λ ∈ U .

2

Lemma B.4.2 Let λ ∈ Lδ

∀σ ∈ λ[r]rc ,∃m ∈ MT (r(λ)) : m σ−→X

2

Proof We use the stronger proof obligation B.2 of Lemma B.4.1
σ ∈ λ[r]rc

⇒ (∗ Definition 5.3.3 (complete trace refinement) ∗)
σ ∈ TXStraces(r(λ))

⇒ (∗ Definition 5.3.1 (TXStraces) ∗)
r(λ)

σ
=⇒ final

⇒ (∗ Result B.2 of the proof of Lemma B.4.1 ∗)
∃m ∈ MT (r(λ)), t ∈ TestGenmt(S after σ) : m σ−→ t
∧ final ∈ (S after σ)

⇒ (∗ Definition 5.5.2 rule 2 ∗)
∃m ∈ MT (r(λ)) : m σ−→X

2

Lemma B.4.3 Let λ ∈ Lδ

∀σ ∈ λ[r]inc ,∃m ∈ MT (r(λ)) : m σ−→

2

206

B.4. Proofs Section 5.5: Test-case refinement

Proof This proof follows directly from Lemma B.4.1 2

Lemma B.4.4 Let t ∈ TEST(I, U), q1, q2 ∈ Qt\Failt, λ ∈ Lδ, σ ∈ L∗rδ\{ε}
q1

λ−→ q2 ∧∃m ∈ MT (r(λ)), q′2 ∈ Qm : m σ−→ q′2 ∧∃f : fq2(λ) = m
implies (q1,X) σ−→

t[f]
(q2, q

′
2)

2

Proof The case σ = ε is excluded because the lemma does not hold for this
case. The reason is that test cases do not have τ steps, which implies that
in the lemma σ consists of zero τ steps. As a result q′2 is the start state of
the mini-test, but q′2 6= X.

For the proof we split σ into n actions: σ = λ1 · · ·λn for some n ≥ 1 and
∀1 ≤ i ≤ n : λi ∈ Lrδ. To keep the notation concise, we write q′2 = tn.

q1
λ−→ q2 ∧∃n ≥ 1,m ∈ MT (r(λ)), t1 · · · tn ∈ Qm :

m λ1−−→ t1 · · · tn−1
λn−−→ tn

⇒ (∗ Logical reasoning ∗)
q1

λ−→ q2 ∧∃n ≥ 1,m ∈ MT (r(λ)), t1 · · · tn ∈ Qm :

m λ1−−→ t1 · · · tn−1
λn−−→ tn ∧∃(f : Qt → Lδ → MT) : fq2(λ) = m

⇒ (∗ Definition 5.5.5 (test case refinement: T1) ∗)
q1

λ−→ q2 ∧∃n ≥ 1,m ∈ MT (r(λ)), t1 · · · tn ∈ Qm :

t1 · · · tn−1
λn−−→ tn

∧∃(f : Qt → Lδ → MT) : fq2(λ) = m∧ (q1,X) λ1−−→
t[f]

(q2, t1)

⇒ (∗ Definition 5.5.5 (test case refinement: T2) ∗)
∃(f : Qt → Lδ → MT) : (q1,X) λ1−−→

t[f]
(q2, t1)

∧∀1 ≤ i < n : (q2, ti)
λi−−→

t[f]
(q2, ti+1)

This step makes use of the property of mini-tests that X is a final state
in a mini-test. This means that none of the ti states equals X.

⇒ (∗ Definition 5.5.11 (test case refinement) ∗)
∃tr ∈ t[r] : (q1,X) λ1−−→r (q2, t1) · · · (q2, tn−1) λn−−→r (q2, qn)

⇒ (∗ Definition −→ , logical reasoning, premise: qn = q′2 ∗)
∃tr ∈ t[r] : (q1,X) σ−→r (q2, q

′
2)

2

Lemma B.4.5 Let t ∈ TEST(I, U), q /∈ Failt, σ ∈ L∗rδ

t σ−→ q ⇒ ∀σ′ ∈ σ[r]rc , ∃tr ∈ t[r] : tr
σ′−−→r (q,X)

2

Proof We treat the case σ = ε separate, because it is slightly different.
Test-cases do not have τ -steps, therefore ε means zero τ -steps. This means
that q = start. (start,X) is the start state of tr .

207

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

t τ0−−→ q ∧ q = start
⇒ (∗ Logical reasoning ∗)

(start,X) τ0−−→ (start,X)
⇒ (∗ Definition 5.5.5 (start,X) is the start state of tr ∗)

tr
τ0−−→ (start,X)

For σ 6= ε, we split σ into λ1 · · ·λn for some n ≥ 1 such that σ = λ1 · · ·λn
and ∀1 ≤ i ≤ n : λi ∈ Lrδ. To keep the notation concise, we write t = t0
and q = tn.

t0
λ1···λn−−−−−→ tn

⇒ (∗ Definition of −→ ∗)
∃t0, · · · , tn ∈ Qt : t0

λ1−−→ t1 · · · tn−1
λn−−→ tn

⇒ (∗ Lemma B.4.2 ∗)
∃t0, · · · , tn ∈ Qt : t0

λ1−−→ t1 · · · tn−1
λn−−→ tn

∧∀1 ≤ i ≤ n, σi ∈ λi[r]rc ,∃m ∈ MT (r(λi)) : m σi−−→X
⇒ (∗ Logical reasoning: a priori we do not exclude any function ∗)
∃t0, · · · , tn ∈ Qt : t0

λ1−−→ t1 · · · tn−1
λn−−→ tn

∧∀1 ≤ i ≤ n, σi ∈ λi[r]rc ,∃mi ∈ MT (r(λi)) : mi
σi−−→X

∧∃(f : Qt → Lδ → MT) : fti(λi) = mi

⇒ (∗ Lemma B.4.4 ∗)
∃t0, · · · , tn ∈ Qt : t0

λ1−−→ t1 · · · tn−1
λn−−→ tn

∧∀1 ≤ i ≤ n, σi ∈ λi[r]rc ,∃mi ∈ MT (r(λi)) : mi
σi−−→X

∧∃(f : Qt → Lδ → MT) : fti(λi) = mi ∧ (ti−1,X) σi−−→
t[f]

(ti,X)
Note that Lemma B.4.4 is not defined for subtraces σi equal to ε. This

is no problem for this proof, because σi ∈ λi[r]rc with λi ∈ Lrδ. ε is only a
completely refined trace of τ [r]rc .

⇒ (∗ Logical reasoning ∗)
∃t0, · · · , tn ∈ Qt,∀1 ≤ i ≤ n, σi ∈ λi[r]rc ,∃(f : Qt → Lδ → MT) :
(t0,X) σ1−−→

t[f]
(t1,X) · · · (tn−1,X) σn−−→

t[f]
(tn,X)

⇒ (∗ Definition −→ ∗)
∀1 ≤ i ≤ n, σi ∈ λi[r]rc , ∃(f : Qt → Lδ → MT) :
(t0,X) σ1···σn−−−−−→

t[f]
(tn,X)

⇒ (∗ Lemma B.1.3 (trace refinement is compositional) ∗)
∀σ′ ∈ σ[r]rc , ∃(f : Qt → Lδ → MT) : (t0,X) σ−→

t[f]
(tn,X)

⇒ (∗ Definition 5.5.11 (test case refinement) ∗)
∀σ′ ∈ σ[r]rc ,∃tr ∈ t [r] : (t0,X) σ−→r (tn,X)

⇒ (∗ Logical reasoning: t = t0, q = tn ∗)
∀σ′ ∈ σ[r]rc ,∃tr ∈ t [r] : tr

σ−→r (q,X)
2

Lemma B.4.6 Let t ∈ TEST(I, U), q /∈ Failt

t σ−→ q ⇒ ∀σ′ ∈ σ[r]inc ,∃tr ∈ t[r], q′ /∈ Lrδ : tr
σ′−−→r (q, q′)

2

208

B.4. Proofs Section 5.5: Test-case refinement

q′ /∈ Lrδ expresses that the state (q, q′) is not a state that is used in the
T3 transitions of the definition of test case refinement.

Proof We treat the case σ = ε separately. Incomplete trace refinement of
ε yields the empty set, rendering the lemma vacuously true.

For σ 6= ε we split σ into λ1 · · ·λn for some n ≥ 1 such that σ = λ1 · · ·λn
and ∀1 ≤ i ≤ n : λi ∈ Lrδ. To keep the notation concise we write t = q0 and
q = tn.

t0
λ1···λn−−−−−→ tn

⇒ (∗ Definition −→ ∗)
∃t0, · · · , tn : t0

λ1−−→ t1 · · · tn−1
λn−−→ tn

⇒ (∗ Lemma B.4.2 ∗)
∃t0, · · · , tn ∈ Qt : t0

λ1−−→ t1 · · · tn−1
λn−−→ tn

∧∀1 ≤ i < n, σi ∈ λi[r]rc , ∃mi ∈ MT (r(λi)) : mi
σi−−→X

⇒ (∗ Lemma B.4.3 ∗)
∃t0, · · · , tn ∈ Qt : t0

λ1−−→ t1 · · · tn−1
λn−−→ tn

∧∀1 ≤ i < n, σi ∈ λi[r]rc , ∃mi ∈ MT (r(λi)) : mi
σi−−→X

∧∀σn ∈ λn[r]inc ,∃mn ∈ MT (r(λn)), q′ ∈ Qmn : mn
σn−−→ q′

⇒ (∗ Logical reasoning: a priori we do not exclude any function ∗)
∃t0, · · · , tn ∈ Qt : t0

λ1−−→ t1 · · · tn−1
λn−−→ tn

∧∀1 ≤ i < n, σi ∈ λi[r]rc , ∃m ∈ MT (r(λi)) : mi
σi−−→X

∧∀σn ∈ λn[r]inc ,∃mn ∈ MT (r(λn)), ∃q′ ∈ Qmn : mn
σn−−→ q′

∧∀1 ≤ i ≤ n, ∃(f : Qt → Lδ → MT) : fti(λi) = mi

⇒ (∗ Lemma B.4.4, ∀1 ≤ i ≤ n : ti /∈ Failt ∗)
∀1 ≤ i < n, σi ∈ λi[r]rc , ∃mi ∈ MT (r(λi)) : mi

σi−−→X
∀σn ∈ λn[r]inc ,∃mn ∈ MT (r(λn)), q′ ∈ Qmn : mn

σn−−→ q′

∧∃(f : Qt → Lδ → MT) : (ti−1,X) σi−−→
t[f]

(ti,X)

∧ (tn−1,X) σn−−→
t[f]

(tn, q
′)

Note that Lemma B.4.4 is not defined for subtraces σi equal to ε. This
is no problem for this proof, because σi ∈ λi[r]rc with λi ∈ Lrδ. ε is only
a completely refined trace of τ [r]rc . ε is never the result of an incompletely
refined trace.

We abbreviate ∃(f : Qt → Lδ → MT) to ∃f .

209

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Definition 5.5.5, states mini-tests not in Lrδ ∗)
∀1 ≤ i < n, σi ∈ λi[r]rc ,∃m ∈ MT (r(λi)) : m σi−−→X
∧∀σn ∈ λn[r]inc ,∃m1 ∈ MT (r(λn)), q′ /∈ Lrδ : m1

σn−−→ q′

∧∃f : (ti−1,X) σi−−→
t[f]

(ti,X)∧ (tn−1,X) σn−−→
t[f]

(tn, q
′)

⇒ (∗ Logical reasoning ∗)
∀1 ≤ i < n, σi ∈ λi[r]rc , σn ∈ λn[r]inc ,∃f, q′ /∈ Lrδ :
(t0,X) σ1−−→

t[f]
(t1,X) · · · (tn−1,X) σn−−→

t[f]
(tn, q

′)

⇒ (∗ Definition −→ ∗)
∀1 ≤ i < n, σi ∈ λi[r]rc , σn ∈ λn[r]inc ,∃f, q′ /∈ Lrδ :
(t0,X) σ1···σn−−−−−→

t[f]
(tn, q

′)

⇒ (∗ Lemma B.1.4 ∗)
∀σ′ ∈ σ[r]inc , ∃f, q′ /∈ Lrδ : (t0,X) σ−→

t[f]
(tn, q

′)

⇒ (∗ Definition 5.5.11 ∗)
∀σ′ ∈ σ[r]inc , ∃tr ∈ t[r], q′ /∈ Lrδ : (t0,X) σ−→r (tn, q

′)
⇒ (∗ Logical reasoning, t = t0 and q = tn ∗)
∀σ′ ∈ σ[r]inc , ∃tr ∈ t[r], q′ /∈ Lrδ : tr

σ−→r (q, q′)
2

Lemma B.4.7 Let t ∈ TEST(I, U), q /∈ Fail

t σ−→ q ⇒ ∀σ′ ∈ σ[r], ∃tr ∈ t[r], q′ ∈ Qtr : tr
σ′−−→r q

′

2

Proof This lemma follows directly from Lemma B.4.5 and Lemma B.4.6.

2

Lemma B.4.8 Let σ ∈ L∗rδ,m ∈ MT (r(λ)), q ∈ Qm\{X}

m σ−→ q ⇒ σ ∈ λ[r]inc

2

Proof Analogous to the proof of Lemma B.4.1 we strengthen our proof
obligation to make the proof possible. We introduce the set of states S =
{∗, start} from the mini-test generation algorithm (Definition 5.5.2). With
TestGenmt(S), we denote a mini-test generated from Definition 5.5.2 with
state set S. Let t 6= X.

m σ−→ t⇒ ∃q ∈ Qr(λ)\{finalr(λ)} : r(λ)
σ

=⇒ q ∧ q ∈ (S after σ) (B.3)

∧ t ∈ TestGenmt(S after σ)

210

B.4. Proofs Section 5.5: Test-case refinement

Proof by induction on the length of σ

Basic step: σ = ε. This is a special case, as mini-tests do not have τ steps.
We start the algorithm with S = {startr(λ), ∗}. ∗ is a pseudo state to
prevent δ observations in the start state. For τ0 the set of states S
does not change and startr(λ) ∈ S after ε.

m ε−→ t
⇒ (∗ Definition 5.5.2 ∗)

r(λ)
ε

=⇒ startr(λ) ∧ startr(λ) ∈ (S after ε)

∧ t ∈ TestGenmt(S after ε)

Induction step: Let σ = σ′·λ′ with σ′ ∈ L∗rδ and λ′ ∈ Lrδ and assume
that the lemma holds for σ′. We identify the following cases:

• λ′ ∈ I

m σ′·λ′−−−→ t
⇒ (∗ Definition −→ ∗)
∃t′ : m σ′−−→ t′ λ′−−→ t

⇒ (∗ Induction ∗)
∃t′ ∈ TestGenmt(S after σ′), q1 ∈ Qr(λ)\{finalr(λ)} :

m σ′−−→ t′ λ′−−→ t∧ r(λ)
σ′

==⇒ q1 ∧ q1 ∈ (S after σ′)
⇒ (∗ Definition 5.5.2 (mini-test generation) rule 3 ∗)
∃q1, q ∈ Qr(λ)\{finalr(λ)} : r(λ)

σ′
==⇒ q1

λ′
==⇒ q

∧ q ∈ (S after σ′·λ′)∧ t ∈ TestGenmt(S after σ′·λ′)
⇒ (∗ Definition =⇒ ∗)
∃q ∈ Qr(λ)\{finalr(λ)} : r(λ)

σ′·λ′
===⇒ q ∧ q ∈ (S after σ′·λ′)

∧ t ∈ TestGenmt(S after σ′·λ′)
⇒ (∗ σ = σ′·λ′ ∗)
∃q ∈ Qr(λ)\{finalr(λ)} : r(λ)

σ
=⇒ q ∧ q ∈ (S after σ)

∧ t ∈ TestGenmt(S after σ)

• λ′ ∈ U

m σ′·λ′−−−→ t
⇒ (∗ Definition −→ ∗)
∃t′ : m σ′−−→ t′ λ′−−→ t

⇒ (∗ Induction ∗)
∃t′ ∈ TestGenmt(S after σ′), q1 ∈ Qr(λ)\{finalr(λ)} :

m σ′−−→ t′ λ′−−→ t∧ r(λ)
σ′

==⇒ q1 ∧ q1 ∈ (S after σ′)

211

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

⇒ (∗ Definition 5.5.2 (mini-test generation) rule 4 and 5 ∗)
∃q1, q ∈ Qr(λ)\{finalr(λ)} : r(λ)

σ′
==⇒ q1

λ′
==⇒ q

∧ q ∈ (S after σ′·λ′)∧ t ∈ TestGenmt(S after σ′·λ′)
⇒ (∗ Definition =⇒ ∗)
∃q ∈ Qr(λ)\{finalr(λ)} : r(λ)

σ′·λ′
===⇒ q ∧ q ∈ (S after σ′·λ′)

∧ t ∈ TestGenmt(S after σ′·λ′)
⇒ (∗ σ = σ′·λ′ ∗)
∃q ∈ Qr(λ)\{finalr(λ)} : r(λ)

σ
=⇒ q ∧ q ∈ (S after σ)

∧ t ∈ TestGenmt(S after σ)

• λ = δ, this case is analogous to the previous step. Note that δ is
by definition not allowed if ∗ ∈ S.

From this intermediate result we can conclude, using Definition 5.3.4
(incomplete trace refinement), that σ ∈ λ[r]inc . 2

Lemma B.4.9 Let m ∈ MT (r(λ))

m σ−→X⇒ σ ∈ λ[r]rc

2

Proof Analogous to the proof of Lemma B.4.8 we obtain for the case q = X
that r(λ)

σ
=⇒ finalr(λ). Using Definition 5.3.3 (complete trace refinement) we

know that σ ∈ λ[r]rc
2

Many of the previous lemmas showed properties of refined test-cases,
based on properties of an abstract test-case. The following lemmas are the
other way around. They show that properties of a refined test-case imply
certain properties of the abstract test-case.

The following lemma depends on a property that is very similar to the
final state clean property for transition systems. The lemma expresses that
for traces that do not encounter states with X as the second state element,
originate from one mini-test.

Lemma B.4.10 Let (q1,X), (q, q′) ∈ Qr , q1, q /∈ Fail, q′ /∈ Lrδ, σ ∈ L∗rδ and
the trace σ does not encounter any intermediate states with X as the second
state element.

(q1,X) σ−→r (q, q′)∧ (q1,X) 6= (q, q′)

⇒ ∃λ ∈ Lδ : q1
λ−→ q ∧∃m ∈ MT (λ) : m σ−→ q′

2

Proof Test cases do not have τ steps, therefore the only possibility for ε is
zero τ -steps. This violates the premise: (q1,X) 6= (q, q′). This means that σ
consists of one or more actions. We split σ into λ1 · · ·λn such that ∀1 ≤ i ≤
n : λi ∈ Lrδ and σ = λ1 · · ·λn. In the proof we use (q, q′) = (qn+1, q

′
n+1).

212

B.4. Proofs Section 5.5: Test-case refinement

(q1,X) λ1···λn−−−−−→r (q, q′)
⇒ (∗ Definition −→ ∗)
∀1 ≤ i ≤ n,∃(qi, q′i) ∈ Qr :

(q1,X) λ1−−→r (q2, q
′
2) · · · (qn, q′n) λn−−→r (qn+1, q

′
n+1)

⇒ (∗ Definition 5.5.5 (test case refinement: T2), premise q /∈ Fail
and no intermediate X states ∗)

∀1 ≤ i ≤ n,∃(qi, q′i) ∈ Qr :

(q1,X) λ1−−→r (q2, q
′
2) · · · (qn, q′n) λn−−→r (qn+1, q

′
n+1)

∧∀1 < i ≤ n,∃λ ∈ Lδ, (f : Q→ Lδ → MT), p ∈ Qt :
(p, λ, qi) ∈ T ∧ (q′i, λi, q

′
i+1) ∈ Tfqi (λ) ∧ qi = qi+1 = q

⇒ (∗ Logical reasoning: q = qi ∗)
∀1 ≤ i ≤ n,∃(qi, q′i) ∈ Qr :

(q1,X) λ1−−→r (q, q′2) · · · (q, q′n) λn−−→r (q, q′n+1)
∧∀1 < i ≤ n,∃λ ∈ Lδ, (f : Q→ Lδ → MT), p ∈ Q :
(p, λ, q) ∈ T ∧ (q′i, λi, q

′
i+1) ∈ Tfq(λ)

⇒ (∗ Definition 5.5.5 (test case refinement: T1), premise q /∈ Fail ∗)
∀1 ≤ i ≤ n,∃(qi, q′i) ∈ Qr :

(q1,X) λ1−−→r (q, q′2) · · · (q, q′n) λn−−→r (q, q′n+1)
∧∀1 < i ≤ n,∃λ ∈ Lδ, (f : Q→ Lδ → MT), p ∈ Q :

(p, λ, q) ∈ T ∧ (q′i, λi, q
′
i+1) ∈ Tfq(λ) ∧∃λ′ ∈ Lδ : q1

λ′−−→ q

∧∃(f ′ : Q→ Lδ → MT) : (startf ′q(λ), λ1, q
′
2) ∈ Tf ′q(λ)

⇒ (∗ Logical reasoning: states of refinement transition systems
are unique. Therefore λ′ = λ and f ′ = f ∗)

∃λ ∈ Lδ : q1
λ−→ q

∧∃(f : Q→ Lδ → MT) : (startfq(λ), λ1, q
′
2) ∈ Tfq(λ)

∧∀1 < i ≤ n,∃(qi, q′i) ∈ Qr : (q′i, λi, q
′
i+1) ∈ Tfq(λ)

⇒ (∗ Definition −→ ∗)
∃λ ∈ Lδ : q1

λ−→ q ∧∃(f : Q→ Lδ → MT) : startfq(λ)
λ1···λn−−−−−→

fq(λ)
q

⇒ (∗ Logical reasoning: f has a mini-test as result, qn+1 = q ∗)
∃λ ∈ Lδ : q1

λ−→ q ∧∃m ∈ MT (λ) : m λ1···λn−−−−−→mq
Although not explicitly stated, transitions from T3 are not possible, be-

cause q′ /∈ Lrδ.
2

Lemma B.4.11 Let t ∈ TEST(I, U), tr ∈ t[r], q, q′ /∈ Failt

(q,X) σ−→r (q′,X)⇒ ∃σ′ ∈ L∗δ : σ ∈ σ′[r]rc ∧ q
σ′−−→ q′

2

Proof From the definition of test case refinement we see that ∃(f : Qt →
Lδ → MT) : tr ∈ t[f]. fq(λ) gives a mini-test for refinement transition
system r(λ).

213

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

Proof by induction on the number of intermediate state pairs that have
X as their second state. Let n denote the number of such state pairs.

Basic step: n = 0. This proof holds by construction. We distinguish two
cases

• σ = ε. This case holds straight forward as there are no τ steps in
test cases.

(q,X) ε−→r (q′,X)
⇒ (∗ Definition ε, in this case zero τ -steps ∗)

q = q′ ∧ q ε−→ q′

⇒ (∗ Definition 5.3.5 ∗)
ε ∈ ε[r]∧ q ε−→ q′

• |σ| > 0. Because σ 6= ε we know that (q,X) 6= (q′,X).

(q,X) σ−→r (q′,X)
⇒ (∗ Lemma B.4.10 ∗)
∃λ ∈ Lδ : q λ−→ q′ ∧∃m ∈ MT (λ) : m σ−→X

⇒ (∗ Lemma B.4.9 ∗)
∃λ ∈ Lδ : q λ−→ q′ ∧σ ∈ λ[r]rc

Induction step: Suppose that σ passes n + 1 X-states and assume that
the lemma holds for n ≥ 0. For the proof we split σ into σ1 and σ2 in
such a way that σ1 passes n X states. This means that σ2 does not
pass any X states (together σ1 and σ2 pass n+ 1 X states).

(q,X) σ1·σ2−−−−→r (q′,X)
⇒ (∗ Definition −→ ∗)
∃(q1,X) ∈ Qtr : (q,X) σ1−−→r (q1,X) σ2−−→r (q′,X)

⇒ (∗ Induction ∗)
∃(q1,X) ∈ Qtr : (q1,X) σ2−−→r (q′,X)

∧∃σ′1 ∈ L∗δ : σ1 ∈ σ′1[r]rc ∧ q
σ′1−−→ q1

⇒ (∗ Basic step (no intermediate X states for σ2) ∗)
∃(q1,X) ∈ Qtr , σ′1 ∈ L∗δ : σ1 ∈ σ′1[r]rc ∧ q

σ′1−−→ q1

∧∃σ′2 ∈ L∗δ : σ2 ∈ σ′2[r]rc ∧ q1
σ′2−−→ q′

⇒ (∗ Definition −→ ∗)
∃σ′1, σ′2 ∈ L∗δ : σ1 ∈ σ′1[r]rc ∧σ2 ∈ σ′2[r]rc ∧ q

σ′1·σ′2−−−−→ q′

⇒ (∗ Lemma B.1.3 ∗)
∃σ′1, σ′2 ∈ L∗δ : (σ1·σ2) ∈ (σ′1·σ′2)[r]rc ∧ q

σ′1·σ′2−−−−→ q′

⇒ (∗ Logical reasoning (σ = σ1·σ2, rewrite σ′1·σ′2 to σ′) ∗)
∃σ′ ∈ L∗δ : σ ∈ σ′[r]rc ∧ q

σ′−−→ q′

2

214

B.4. Proofs Section 5.5: Test-case refinement

Lemma B.4.12 Let t ∈ TEST(I, U), tr ∈ t[r], (q1,X), (q, q′) ∈ Qr , q, q1 /∈
Failt, q

′ 6= X, q′ /∈ Lrδ

(q1,X) σ−→r (q, q′)⇒ ∃σ′ ∈ L∗δ : σ ∈ σ′[r]inc ∧ q1
σ′−−→ q

2

Proof For this proof we want to split σ into σ1 and σ2 such that σ2 does not
encounter any X states for the second state of the state pair. We identify the
case where σ encounters zero X states and the case where σ encounters one
or more X states. We start with the case where the number of intermediate
X states is zero.

(q1,X) σ−→ (q, q′)
⇒ (∗ Premise: q′ 6= X ∗)

(q1,X) σ−→ (q, q′)∧ (q1,X) 6= (q, q′)
⇒ (∗ Lemma B.4.10, q1, q /∈ Failt, q

′ /∈ Lrδ ∗)
∃λ ∈ Lδ : q1

λ−→ q ∧∃m ∈ MT (r(λ)) : m σ−→ q′

⇒ (∗ Lemma B.4.8, note that q′ 6= X ∗)
∃λ ∈ Lδ : q1

λ−→ q ∧σ ∈ λ[r]inc
The number of intermediate states (q2, q

′
2) that σ passes with q′2 = X is

greater than zero. This means that we can split σ into two parts σ1 and
σ2 where σ2 does not encounter any intermediate X states (as a result σ1

encounters fewer intermediate states than σ).

∃(q2,X) ∈ Qr : (q1,X) σ1−−→ (q2,X) σ2−−→ (q, q′)
⇒ (∗ First case in this proof ∗)
∃(q2,X) ∈ Qr : (q1,X) σ1−−→ (q2,X) σ2−−→ (q, q′)

∧∃λ ∈ Lδ : q2
λ−→ q ∧σ2 ∈ λ[r]inc

Because q′ 6= X we know that σ2 6= ε. By Definition 5.5.5 we know that
q2 /∈ Failt, because it has an outgoing transition.

⇒ (∗ Lemma B.4.11 ∗)
∃(q2,X) ∈ Qr : (q1,X) σ1−−→ (q2,X) σ2−−→ (q, q′)

∧∃λ ∈ Lδ : q2
λ−→ q ∧σ2 ∈ λ[r]inc

∧∃σ′1 ∈ L∗δ : σ1 ∈ σ′1[r]rc ∧ q1
σ′1−−→ q2

⇒ (∗ Definition −→ ∗)
∃σ′1 ∈ L∗δ , λ ∈ Lδ : q1

σ′1·λ−−−→ q ∧σ1 ∈ σ′1[r]rc ∧σ2 ∈ λ[r]inc
⇒ (∗ Lemma B.1.4 ∗)
∃σ′1 ∈ L∗δ , λ ∈ Lδ : q1

σ′1·λ−−−→ q ∧ (σ1·σ2) ∈ (σ′1·λ)[r]inc
⇒ (∗ Logical reasoning: σ = σ1·σ2, rewrite σ′1·λ as σ′ ∗)
∃σ′ ∈ L∗δ : q1

σ′−−→ q ∧σ ∈ σ′[r]inc
2

215

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

Lemma B.4.13 Let s ∈ LTS(I, U), T ⊆ TEST(I, U) be fail fast, s, t ∈ T ,
tr ∈ t[r], (q, q′) ∈ Qr\(Failr∪Inconclusiver) furthermore q′ /∈ Lrδ (we exclude
the T3 states from Definition 5.5.11).

tr
σ−→r (q, q′)⇒ ∃σ′ ∈ Straces(s) : t σ′−−→ q ∧σ ∈ σ′[r]

2

Proof We make use of the fact that only completely refined traces have X
as their second state component (in the refined test case). We identify the
following cases:

• q′ = X. Let (q0,X) be the start state of tr .

(q0,X) σ−→r (q,X)
⇒ (∗ Definition 5.5.5 (we exclude T3) ∗)

(q0,X) σ−→r (q,X)∧ q /∈ Failt
⇒ (∗ Lemma B.4.11 ∗)
∃σ′ ∈ L∗δ : σ ∈ σ′[r]rc ∧ q0

σ′−−→tq ∧ q /∈ Failt
⇒ (∗ T is fail fast ∗)
∃σ′ ∈ Straces(s) : σ ∈ σ′[r]rc ∧ t

σ′−−→ q

• q′ 6= X
(q0,X) σ−→r (q, q′)

⇒ (∗ Definition 5.5.5 (we exclude T3) ∗)
(q0,X) σ−→r (q, q′)∧ q /∈ Failt

⇒ (∗ Lemma B.4.12 ∗)
∃σ′ ∈ L∗δ : σ ∈ σ′[r]inc ∧ q0

σ′−−→ q ∧ q /∈ Failt
⇒ (∗ T is fail fast ∗)
∃σ′ ∈ Straces(s) : σ ∈ σ′[r]inc ∧ t

σ′−−→ q

2

Lemma B.4.14 Let s ∈ LTS(I, U), T ⊆ TEST(I, U) be a fail fast, sound
and conformance trace complete test suite with respect to ioco and s. Note
that the conformance trace completeness demand is only necessary for the
only if case.

σ ∈ Straces(s[r])⇔ ∃tr ∈ T [r], q /∈ Failr : tr
σ−→r q

2

Proof

Only if: Because of the definition of trace refinement (Definition 5.3.5) and
because Straces(s)[r] = Straces(s[r]) (Theorem 5.3.12), we identify the
following cases:

216

B.4. Proofs Section 5.5: Test-case refinement

• σ ∈ Straces(s)[r]rc
⇒ (∗ Definition 5.3.5 (trace refinement) ∗)
∃σ′ ∈ Straces(s) : σ ∈ σ′[r]rc

⇒ (∗ T is sound and conformance trace complete ∗)
∃σ′ ∈ Straces(s), t ∈ T, q1 ∈ Q\Fail : t σ′−−→ q1 ∧σ ∈ σ′[r]rc

⇒ (∗ Lemma B.4.5 ∗)
∃σ′ ∈ Straces(s), t ∈ T, q1 ∈ Q\Fail : t σ′−−→ q1 ∧σ ∈ σ′[r]rc
∧∀σ′′ ∈ σ′[r]∃tr ∈ t[r] : tr

σ′′−−→r (q1,X)
⇒ (∗ Logical reasoning ∗)
∃tr ∈ T [r], q1 ∈ Q\Fail : tr

σ−→r (q1,X)
⇒ (∗ Definition 5.5.11 (test case refinement) ∗)
∃tr ∈ T [r], q /∈ Failr : tr

σ−→r q

• σ ∈ Straces(s)[r]inc
⇒ (∗ Definition trace refinement ∗)
∃σ′ ∈ Straces(s) : σ ∈ σ′[r]inc

⇒ (∗ T is sound and conformance trace complete ∗)
∃σ′ ∈ Straces(s), t ∈ T, q1 /∈ Fail : t σ′−−→ q1 ∧σ ∈ σ′[r]inc

⇒ (∗ Lemma B.4.6 ∗)
∃σ′ ∈ Straces(s), t ∈ T, q1 /∈ Fail : t σ′−−→ q1 ∧σ ∈ σ′[r]inc
∧∀σ′′ ∈ σ′[r]inc∃tr ∈ t[r] : tr

σ′′−−→r (q1, q
′
1)∧ q′1 /∈ Lrδ

⇒ (∗ Definition 5.5.11 (test case refinement: T1, T2, T3) ∗)
∃σ′ ∈ Straces(s), t ∈ T, q1 /∈ Fail : t σ′−−→ q1 ∧σ ∈ σ′[r]inc
∧∀σ′′ ∈ σ′[r]inc∃tr ∈ t[r] : tr

σ′′−−→r (q1, q
′
1)∧ (q1, q

′
1) /∈ Failtr

⇒ (∗ Logical reasoning ∗)
∃tr ∈ T [r], q /∈ Failtr : tr

σ−→r q

If:

∃tr ∈ T [r], q /∈ Failr : tr
σ−→r q

⇒ (∗ Lemma B.4.13 ∗)
∃σ′ ∈ Straces(s) : σ ∈ σ′[r]

⇒ (∗ Logical reasoning ∗)
σ ∈ Straces(s)[r]

⇒ (∗ Theorem 5.3.12 ∗)
σ ∈ Straces(s[r])

2

Lemma B.4.15 Let T ⊆ TEST(I, U) be a test suite, tr ∈ T [r].

tr
σ−→r Failr ⇒ ∃σ′ ∈ L∗rδ, x ∈ Urδ : σ = σ′·x

2

217

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

Proof This is a proof by construction. In Definition 5.5.8 (test case refine-
ment) Unknown states are changed to Pass, Fail and Inconclusive states. A
state in Unknown is added in the skeleton generation phase Definition 5.5.11.
In that case rule T3 of Definition 5.5.11 adds transitions to Unknown states.
This only happens via an output action.

2

Lemma B.4.16 Let σ ∈ Straces(s[r]), x ∈ Urδ, T ⊆ TEST is a sound test
suite.

∀σ′ ∈ (σ·x)〈r〉∃t ∈ T : t σ′−−→ fail⇒ σ·x /∈ Straces(s[r])

2

Proof Proof by reductio ad absurdum. Suppose that σ·x ∈ Straces(s[r])
σ·x ∈ Straces(s[r])

⇒ (∗ Theorem 5.3.12 ∗)
σ·x ∈ Straces(s)[r]

⇒ (∗ Definition 5.3.5 ∗)
∃σ′ ∈ Straces(s) : σ·x ∈ σ′[r]

⇒ (∗ Proposition 5.3.11 ∗)
∃σ′ ∈ Straces(s) : σ′ ∈ (σ·x)〈r〉

⇒ (∗ Premise ∗)
∃σ′ ∈ Straces(s) : σ′ ∈ (σ·x)〈r〉 ∧ ∃t ∈ T : t σ′−−→ fail

⇒ (∗ T is sound ∗)
∃σ′ ∈ Straces(s) : σ′ /∈ Straces(s)

⇒ (∗ Logical reasoning ∗)
Contradiction

2

Proposition 5.5.13 Let T ∈ TEST(I, U) be sound, conformance trace
complete and fail fast, tr = 〈Qr , Ir , Ur , Tr , q0,Failr ,Passr 〉 ∈ T [r], r : Lτ →
FLTS, σ ∈ L∗rδ.

tr
σ−→r fail⇒ ∃σ′ ∈ Straces(s[r]), x ∈ Urδ : σ = σ′·x∧x /∈ out(s[r] after σ′)

2

Proof Because of Lemma B.4.15 we know that a trace leading to fail ends
with an output. To make the proof easier to read we use σ = σ′·x for some
σ′ ∈ L∗rδ, x ∈ Urδ.

tr
σ′·x−−−→r fail

⇒ (∗ Definition −→ ∗)
∃q ∈ Qtr : tr

σ′−−→ q x−→ fail
⇒ (∗ Lemma B.4.14 ∗)
∃q ∈ Qtr : tr

σ′−−→ q x−→ fail∧σ′ ∈ Straces(s[r])
⇒ (∗ Definition 5.5.8 (failure state assignment) ∗)
∃q ∈ Qtr : tr

σ′−−→ q x−→ fail∧σ′ ∈ Straces(s[r])
∧∀σ1 ∈ (σ′·x)〈r〉,∃t ∈ T : t σ1−−→ fail

218

B.4. Proofs Section 5.5: Test-case refinement

⇒ (∗ Lemma B.4.16 ∗)
σ′ ∈ Straces(s[r])∧σ′·x /∈ Straces(s[r])

⇒ (∗ Definition Straces ∗)
∀q ∈ Qs[r] : (s[r]

σ′
==⇒r q implies q

x
==⇒/ r)∧σ′ ∈ Straces(s[r])

⇒ (∗ Definition out and after ∗)
x /∈ out(s[r] after σ′)∧σ′ ∈ Straces(s[r])

2

Theorem 5.5.14 Let t ∈ TEST(I, U), s ∈ LTS(I, U), r : Lτ → FLTS
and let t be fail fast and conformance trace complete w.r.t. ioco and s.
(t is sound w.r.t. ioco and s)⇒ (t[r] is sound w.r.t. ioco and s[r])

2

Proof We immediately use the expansions of the definitions of soundness
and ioco. We actually prove the inverse implication.

i
σ

=⇒ ∧ tr σ−→r fail
⇒ (∗ Proposition 5.5.13 ∗)
∃σ′ ∈ Straces(s[r]), x ∈ Urδ : σ = σ′·x∧ i σ′·x

===⇒
∧x /∈ out(s[r] after σ′)

⇒ (∗ Definition out and after ∗)
x ∈ out(i after σ′)∧x /∈ out(s[r] after σ′)

⇒ (∗ Definition ioco ∗)
i /ioco s[r]

2

The following proposition shows that the Fail and Inconclusive sets can
indeed be taken together if a test-suite is fail-fast and conformance trace
complete.

Proposition 5.5.17 Let T be complete, fail fast and conformance trace
complete with respect to s and ioco and let tr ∈ T [r].

tr
σ·x−−→ inconclusive⇒ x /∈ out(s[r] after σ)

2

Proof
tr

σ·x−−→ inconclusive
⇒ (∗ Definition 5.5.8 (verdict assignment) ∗)

@σ′ ∈ (σ·x)〈r〉, t ∈ T, q ∈ Qt\Failt : t σ′−−→ q
⇒ (∗ Logical reasoning, use that T is conformance trace complete ∗)
∀σ′ ∈ (σ·x)〈r〉 : (∃t ∈ T, q ∈ Failt : t σ′−−→ q)∨ (σ′ /∈ Straces(s))

⇒ (∗ Logical reasoning ∗)
∀σ′ ∈ (σ·x)〈r〉 : σ′ /∈ Straces(s)

⇒ (∗ Lemma B.1.7 ∗)
σ·x /∈ Straces(s)[r]

⇒ (∗ Theorem 5.3.12 ∗)
σ·x /∈ Straces(s[r])

2

219

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

Lemma B.4.17 Let s ∈ LTS(I, U), σ ∈ Straces(s[r]) and let T be a ex-
haustive and conformance trace complete test suite for s with respect to
ioco.

x /∈ out(s[r] after σ)⇒ ∃tr ∈ T [r], q ∈ Qtr : tr
σ·x−−→r q

2

Proof There is always an output that is allowed after σ (to be a valid sus-
pension trace), if no outputs are allowed then quiescence is allowed. There-
fore we can write: ∃y ∈ Urδ : σ·y ∈ Straces(s[r]).

σ ∈ Straces(s[r])
⇒ (∗ Explained above ∗)
∃y ∈ Urδ : σ·y ∈ Straces(s[r])

⇒ (∗ Theorem 5.3.12 ∗)
∃y ∈ Urδ : σ·y ∈ Straces(s)[r])

⇒ (∗ Definition trace refinement ∗)
∃σ′ ∈ Straces(s), y ∈ Urδ : σ·y ∈ σ′[r]

⇒ (∗ T is exhaustive and conformance trace complete ∗)
∃σ′ ∈ Straces(s), y ∈ Urδ : σ·y ∈ σ′[r]∧∃t ∈ T, q ∈ Qt\Failt : t σ′−−→ q

⇒ (∗ Lemma B.4.7 ∗)
∃σ′ ∈ Straces(s), y ∈ Urδ : σ·y ∈ σ′[r]∧∃t ∈ T, q ∈ Qt\Failt : t σ′−−→ q
∧∀σ1 ∈ σ′[r]∃tr ∈ t[r], q′ ∈ Qtr : tr

σ1−−→r q
′

⇒ (∗ Logical reasoning: σ·y ∈ σ′[r] ∗)
∃tr ∈ T [r], q ∈ Qtr : tr

σ·y−−→r q
⇒ (∗ Definition 5.5.11: T3 ∗)
∃tr ∈ T [r], q′ ∈ Qtr : tr

σ·x−−→r q
′

2

Proposition 5.5.16 Let s ∈ LTS(I, U), σ ∈ Straces(s[r]) and let T be a
fail fast, exhaustive and conformance trace complete test suite for s with
respect to ioco. As T is exhaustive we take the Fail and Inconclusive sets of
the refined test cases together (they are the Fail state set).

x /∈ out(s[r] after σ)⇒ ∃tr ∈ T [r], q ∈ (Failtr ∪ Inconclusivetr) : tr
σ·x−−→r q

2

Proof Lemma B.4.17 shows that there is a refined test case that can execute
the trace σ·x. In the proof we show that the state where the test case ends
after executing σ·x can only be a fail state or an inconclusive state.

Suppose that q ∈ Qtr \(Failtr ∪ Inconclusivetr). Definition 5.5.11 shows
that q is a tuple. We use the state pair (q1, q2) to represent q.

220

B.4. Proofs Section 5.5: Test-case refinement

∃tr ∈ T [r] : tr
σ·x−−→r (q1, q2)

⇒ (∗ Lemma B.4.13 ∗)
∃σ′ ∈ Straces(s) : t σ′−−→ q1 ∧ (σ·x) ∈ σ′[r]

⇒ (∗ Definition trace refinement ∗)
(σ·x) ∈ Straces(s)[r]

⇒ (∗ Theorem 5.3.12 ∗)
(σ·x) ∈ Straces(s[r])

⇒ (∗ Premise: σ·x /∈ Straces(s[r]) ∗)
(σ·x) ∈ Straces(s[r])∧ (σ·x) /∈ Straces(s[r])

⇒ (∗ Logical reasoning ∗)
contradiction

This means that according to Definition 5.5.11 q ∈ Failtr or q ∈ Inconclusivetr .
2

Theorem 5.5.18 Let s ∈ LTS(I, U), T ⊆ TEST(I, U) be a fail fast and
conformance trace complete test suite with respect to ioco and s
(T is exhaustive w.r.t. ioco and s) ⇒ (T [r] is exhaustive w.r.t. ioco
and s[r])

2

Proof We immediately expand the definitions of exhaustiveness and ioco.
We actually proof the inverse implication.

i /ioco s[r]
⇒ (∗ Definition ioco ∗)
∃σ ∈ Lrδ, x ∈ Lrδ : x ∈ out(i after σ)∧x /∈ out(s[r] after σ)

⇒ (∗ Proposition 5.5.16 ∗)
∃σ ∈ Lrδ, x ∈ Lrδ : x ∈ out(i after σ)
∧∃tr ∈ T [r] : tr

σ·x−−→ fail∨ tr σ·x−−→ inconclusive
⇒ (∗ Definition out and after ∗)
∃σ ∈ Lrδ, x ∈ Lrδ : i

σ·x
==⇒

∧∃tr ∈ T [r] : tr
σ·x−−→ fail∨ tr σ·x−−→ inconclusive

⇒ (∗ We take the union of Fail and Inconclusive as fail states ∗)
i /passes T [r]

From this we conclude that T [r] is exhaustive w.r.t. ioco and s[r].
2

221

Appendix B. Proofs of Chapter 5: Atomic action refinement in MBT

222

Appendix C

Samenvatting

Het werk in dit proefschrift vindt plaats in de traditie van formeel testen
op basis van gelabelde transitie systemen (LTS). Preciezer gezegd vindt het
plaats in de traditie van conformance testing, waarbij we in het bijzonder
uitgaan van de ioco theorie van Tretmans [Tre08]. Dit betekent dat we
van het gedrag van het te testen systeem een LTS model maken, dit is een
model met toestanden en acties om van toestand naar toestand te komen.
Het model dient als specificatie van het gewenste gedrag van het te testen
systeem. Neem als voorbeeld van een LTS een koffie automaat. In de begin-
toestand kunnen we geld inwerpen, waarna we in een toestand komen waar
we op het knopje voor koffie kunnen drukken, waarna de koffiemachine ons
koffie geeft en weer teruggaat naar zijn begintoestand.

In hoofdstuk twee geven we een overzicht van formeel testen en de ioco
theorie in het bijzonder. De ioco theorie beschrijft hoe van een model
een verzameling testen afgeleid kan worden die het te testen systeem in de
limiet (tijd en ruimte) volledig test. Daarnaast is ioco een zogenaamde con-
formance relatie; een relatie die correctheid uitdrukt tussen model en het te
testen systeem. Het toepassen van de theorie staat of valt met het gemak
waarmee een model te maken en aan te passen is. Dit proefschrift gaat in
op twee manieren om het maken en aanpassen van modellen te onderste-
unen. De eerste betreft het opbouwen van modellen uit communicerende
sub-modellen. Dit is een voorbeeld van de belangrijke verdeel en heers en-
gineering strategie: deel het probleem op in kleinere deelproblemen. De
tweede manier betreft het geautomatiseerd aanpassen van modellen met be-
hulp van de zogenaamde action-refinement techniek. Hierbij vervangen we
acties uit het model door complexer gedrag, zoals een LTS-model.

In hoofdstuk drie gaan we in op het samenstellen van een model uit
communicerende sub-modellen. We laten zien dat de traditionele ioco the-
orie hiervoor tekortkomingen heeft: de ioco theorie werkt enkel op volledig
gespecificeerde modellen. Deze tekortkoming was nog niet bekend. De re-
den voor de problemen met het samenstellen van communicerende systemen

223

Appendix C. Samenvatting

is gelegen in het feit dat de ioco theorie incomplete specificatie modellen
toestaat, incompleet in de zin dat niet alle invoeracties beschreven hoeven
te zijn. Dit leidt tot een incorrect voorspelling van het te testen gedrag
bij het componeren van communicerende systemen. Stel bijvoorbeeld dat
de hierboven beschreven koffiemachine uit twee componenten bestaat, een
component die het geld afhandelt en een component die de koffie zet. Bij
voldoende geld geeft de geld component door middel van de actie start de
opdracht aan de koffie component om het koffie-maak proces te starten. Stel
nu dat het model van de koffie component, zoals de ioco theorie toestaat,
niet gespecificeerd is voor de invoer start. Dit betekent op model niveau dat
de koffie component niet kan starten en geen koffie als uitvoer zal geven.
Het te testen systeem, mits correct gemaakt, zal uiteraard wel koffie geven.
Dit betekent dat de ioco theorie een foute voorspelling doet (niet sound
is), namelijk geen uitvoer van koffie, waar een correct gëımplementeerde
koffiemachine wel koffie als uitvoer heeft.

We beschrijven drie aanpakken om deze tekortkoming in de ioco theorie
te verhelpen. De eerste betreft het automatisch volledig specificeren van
specificatie modellen. De tweede betreft een aanpassing in de semantiek van
de ioco definitie. Beide hebben tekortkomingen en lossen het beschreven
probleem gedeeltelijk op. Onze laatste aanpak betreft het veranderen van
de semantiek van de parallelle operator om systemen mee samen te stellen.
Dit is een bevredigende oplossing voor het beschreven probleem.

Hoofdstuk vier betreft een inleiding in de action-refinement theorie. Ze
beschrijft de action-refinement theorie en geeft een aantal scenario’s uit de
praktijk waarom action-refinement behulpzaam kan zijn voor het automa-
tisch aanpassen van specificatie-modellen. We laten zien dat de reeds on-
twikkelde action-refinement theorie niet direct toepasbaar is voor testen met
de ioco theorie. Dit komt omdat de bestaande theorieën niet uitgaan van
modellen met invoer en uitvoer, zoals de ioco theorie gebruikt. Verder is
veel onderzoek, in het bijzonder naar non-atomic action-refinement, gericht
op andere modellen dan LTS-en, waardoor dit werk niet bruikbaar is. Boven-
dien kunnen met de bestaande theorieën ioco testgevallen niet zomaar wor-
den verfijnt.

In hoofdstuk vijf gaan we in op ons action-refinement onderzoek om bin-
nen de ioco theorie modellen automatisch aan te passen. Onze bijdrage
richt zich op zogenaamde atomic action-refinement. Dit betekent dat we
het verfijnen van gedrag dat wordt veroorzaakt door parallellisme buiten
beschouwing laten. We behandelen atomic action-refinement voor transi-
tie systemen met invoer en uitvoer, voor traces en test-cases. We tonen
aan onder welke omstandigheden het verfijnen van testgevallen uit een (ab-
stract) model gelijk is aan eerst het verfijnen van het model en vervolgens
hergenereren van de testgevallen.

We sluiten af met conclusies en enkele wegen voor verder onderzoek.

224

Bibliography

[Abr87] S. Abramsky. Observational equivalence as a testing equivalence.
Theoretical Computer Science, 53(3):225–241, 1987.

[Axi] Axini. http://www.axini.com.

[BAL+90] E. Brinksma, R. Alderden, R. Langerak, J. v. d. Lagemaat,
and J. Tretmans. A formal approach to conformance testing.
In J. de Meer, L. Mackert, and W. Effelsberg, editors, Second
Int. Workshop on Protocol Test Systems, pages 349–363. North-
Holland, 1990. Also: Memorandum INF-89-45, University of
Twente, The Netherlands.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO speci-
fication language LOTOS. Computer Networks and ISDN Sys-
tems, 14:25–59, 1987.

[BB04] L. B. Briones and E. Brinksma. A test generation framework
for quiescent real-time systems. In J. Grabowski and B. Nielsen,
editors, FATES, volume 3395 of Lecture Notes in Computer Sci-
ence, pages 64–78. Springer, 2004.

[Bed88] M. Bednarczyk. Categories of Asynchronous Transition Sys-
tems. PhD thesis, University of Sussex, 1988.

[Bel10] A. Belinfante. Jtorx: A tool for on-line model-driven test deriva-
tion and execution. In J. Esparza and R. Majumdar, editors,
TACAS, volume 6015 of Lecture Notes in Computer Science,
pages 266–270. Springer, 2010.

[Ber91] G. Bernot. Testing against formal specifications: A theoretical
view. In S. Abramsky and T. S. E. Maibaum, editors, TAP-
SOFT’91, Volume 2, pages 99–119. Lecture Notes in Computer
Science 494, Springer-Verlag, 1991.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of
communicating sequential processes. Journal of the Association
for Computing Machinery, 31(3):560–599, July 1984.

225

http://www.axini.com

Bibliography

[BJK+05] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of Reactive Sys-
tems, Advanced Lectures [The volume is the outcome of a re-
search seminar that was held in Schloss Dagstuhl in January
2004], volume 3472 of Lecture Notes in Computer Science.
Springer, 2005.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. The
MIT Press, 2008.

[Bri87] E. Brinksma. On the existence of canonical testers. Memoran-
dum INF-87-5, University of Twente, Enschede, The Nether-
lands, 1987.

[BT00] E. Brinksma and J. Tretmans. Testing transition systems: An
annotated bibliography. In Cassez et al. [CJRR01], pages 187–
195.

[CJRR01] F. Cassez, C. Jard, B. Rozoy, and M. D. Ryan, editors. Model-
ing and Verification of Parallel Processes, 4th Summer School,
MOVEP 2000, Nantes, France, June 19-23, 2000, volume 2067
of Lecture Notes in Computer Science. Springer, 2001.

[CJRZ02] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. Stg: A symbolic
test generation tool. In J.-P. Katoen and P. Stevens, editors,
TACAS, volume 2280 of Lecture Notes in Computer Science,
pages 470–475. Springer, 2002.

[CvGG92] I. Czaja, R. J. van Glabbeek, and U. Goltz. Interleaving se-
mantics and action refinement with atomic choice. In G. Rozen-
berg, editor, Advances in Petri Nets: The DEMON Project, vol-
ume 609 of Lecture Notes in Computer Science, pages 89–107.
Springer, 1992.

[DD89] P. Darondeau and P. Degano. Causal trees. In G. Ausiello,
M. Dezani-Ciancaglini, and S. R. D. Rocca, editors, ICALP,
volume 372 of Lecture Notes in Computer Science, pages 234–
248. Springer, 1989.

[DD93] P. Darondeau and P. Degano. Refinement of actions in event
structures and causal trees. Theor. Comput. Sci., 118(1):21–48,
1993.

[DG91] P. Degano and R. Gorrieri. Action refinement for process de-
scription languages. In A. Tarlecki, editor, Mathematical Foun-
dations of Computer Science 1991, volume 520 of Lecture Notes
in Computer Science, pages 121–130. Springer, 1991.

226

Bibliography

[Dij69] E. W. Dijkstra. Structured programming. Technical Re-
port EWD268-0, Technological University Eindhoven, 1969.
URL:http://www.cs.utexas.edu/users/EWD/transcriptions/
EWD02xx/EWD268.html.

[DN87] R. De Nicola. Extensional equivalences for transition systems.
Acta Informatica, 24:211–237, 1987.

[DNH84] R. De Nicola and M. Hennessy. Testing equivalences for pro-
cesses. Theoretical Computer Science, 34:83–133, 1984.

[DNS95] R. De Nicola and R. Segala. A process algebraic view of In-
put/Output Automata. Theoretical Computer Science, 138:391–
423, 1995.

[DR95] V. Diekert and G. Rozenberg, editors. Book of Traces. World
Scientific, Singapore, 1995.

[dVT98] R. de Vries and J. Tretmans. On-the-Fly Conformance Testing
using Spin. In G. Holzmann, E. Najm, and A. Serhrouchni,
editors, Fourth Workshop on Automata Theoretic Verification
with the Spin Model Checker, ENST 98 S 002, pages 115–128,
Paris, France, November 2, 1998. Ecole Nationale Supérieure
des Télécommunications.

[dVT01] R. de Vries and J. Tretmans. Towards formal test purposes.
In E. Brinksma and T. J., editors, FATES 2001, volume Num-
ber NS-01-04 of Brics Notes Series, pages 61–76. University of
Aarhus, Denmark, 2001.

[FJJV96] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-
fly verification techniques for the generation of test suites. In
R. Alur and T. Henzinger, editors, Computer Aided Verification
CAV’96. Lecture Notes in Computer Science 1102, Springer-
Verlag, 1996.

[FJJV97] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experi-
ment in automatic generation of test suites for protocols with
verification technology. Science of Computer Programming –
Special Issue on COST247, Verification and Validation Meth-
ods for Formal Descriptions, 29(1–2):123–146, 1997.

[GR01] R. Gorrieri and A. Rensink. Action refinement. In J. A.
Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Pro-
cess Algebra, chapter 16, pages 1047–1147. Elsevier, 2001.

[Hee98] L. Heerink. Ins and Outs in Refusal Testing. PhD thesis, Uni-
versity of Twente, Enschede, The Netherlands, 1998.

227

Bibliography

[Hen88] M. Hennessy. Algebraic Theory of Processes. Foundations of
Computing Series. The MIT Press, 1988.

[Hoa85] C. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[ISO89] ISO. Information Processing Systems, Open Systems Intercon-
nection, LOTOS - A Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour. Interna-
tional Standard IS-8807. ISO, Geneve, 1989.

[ISO96] ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Information
Retrieval, Transfer and Management for OSI; Framework: For-
mal Methods in Conformance Testing. Committee Draft CD
13245-1, ITU-T proposed recommendation Z.500. ISO – ITU-T,
Geneve, 1996.

[JJ05] C. Jard and T. Jéron. Tgv: theory, principles and algorithms.
STTT, 7(4):297–315, 2005.

[JJTV99] C. Jard, T. Jéron, L. Tanguy, and C. Viho. Remote testing can
be as powerful as local testing. In Formal Desciption Techniques
and Protocol Specification, Testing and Verification FORTE XI
/PSTV XVIII ’99. Kluwer Academic Publishers, 1999.

[JTo] JTorX. http://fmt.cs.utwente.nl/redmine/wiki/jtorx/.

[Lan90] R. Langerak. A testing theory for LOTOS using deadlock de-
tection. In E. Brinksma, G. Scollo, and C. A. Vissers, editors,
Protocol Specification, Testing, and Verification IX, pages 87–
98. North-Holland, 1990.

[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Principles of Distributed Comput-
ing, pages 137–151. 6th Annual ACM Symposium, 1987. Also:
Technical Report MIT/LCS/TM-387, Massachusetts Institute
of Technology, Cambridge, U.S.A., 1987.

[LT89] N. Lynch and M. Tuttle. An introduction to Input/Output Au-
tomata. CWI Quarterly, 2(3):219–246, 1989. Also: Technical
Report MIT/LCS/TM-373 (TM-351 revised), Massachusetts In-
stitute of Technology, Cambridge, U.S.A., 1988.

[LY96] D. Lee and M. Yannakakis. Principles and methods for testing
finite state machines. The Proceedings of the IEEE, August
1996.

228

http://fmt.cs.utwente.nl/redmine/wiki/jtorx/

Bibliography

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[Mon90] U. Montanari. CEDISYS: Compositional distributed systems
(state of the art, research goals, references). Lecture Notes in
Computer Science; Advances in Petri Nets 1989, 424:507–524,
1990.

[Moo56] E. Moore. Gedanken-experiments on sequential machines. In
Automata Studies, number 34 in Annals of Mathematics Studies,
pages 129–153. Princeton University Press, 1956.

[Nus97] B. Nuseibeh. Ariane 5: Who dunnit? IEEE Software, 14(3):15–
16, 1997.

[PBD94] A. Petrenko, G. v. Bochmann, and R. Dssouli. Conformance re-
lations and test derivation. In O. Rafiq, editor, Sixth Int. Work-
shop on Protocol Test Systems, number C-19 in IFIP Transac-
tions, pages 157–178. North-Holland, 1994.

[Pet00] A. Petrenko. Fault model-driven test derivation from finite state
models: Annotated bibliography. In Cassez et al. [CJRR01],
pages 196–205.

[Pha94] M. Phalippou. Executable testers. In O. Rafiq, editor, Sixth
Int. Workshop on Protocol Test Systems, number C-19 in IFIP
Transactions, pages 35–50. North-Holland, 1994.

[Phi87] I. Phillips. Refusal testing. Theoretical Computer Science,
50(2):241–284, 1987.

[Plo81] G. D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Aarhus University, Aarhus,
Denmark, 1981.

[Pre04] R. S. Pressman. Software Engineering: A Practitioners Ap-
proach. McGraw-Hill International Editions, 2004.

[PY97] A. Petrenko and N. Yevtushenko. Fault detection in embed-
ded components. In M. Kim, S. Kang, and K. Hong, editors,
Tenth Int. Workshop on Testing of Communicating Systems,
pages 272–287. Chapman & Hall, 1997.

[PY00] A. Petrenko and N. Yevtushenko. On test derivation from par-
tial specifications. In T. Bolognesi and D. Latella, editors,
FORTE, volume 183 of IFIP Conference Proceedings, pages 85–
102. Kluwer, 2000.

229

Bibliography

[PYVB96] A. Petrenko, N. Yevtushenko, and G. Von Bochman. Fault mod-
els for testing in context. In R. Gotzhein and J. Bredereke, edi-
tors, FORTE, volume 69 of IFIP Conference Proceedings, pages
163 – 178. Kluwer, 1996.

[RW01] A. Rensink and H. Wehrheim. Process algebra with action de-
pendencies. Acta Informatica, 38(3):155–234, 2001.

[Seg93] R. Segala. Quiescence, fairness, testing, and the notion of im-
plementation. In E. Best, editor, CONCUR’93, pages 324–338.
Lecture Notes in Computer Science 715, Springer-Verlag, 1993.

[Seg97] R. Segala. Quiescence, fairness, testing and the notion of im-
plementation. Information and Computation, 138(2):194–210,
1997.

[Sud88] T. A. Sudkamp. Languages and Machines. Addison-Wesley
Publishing Company, Inc, 1988.

[Tre94] J. Tretmans. A formal approach to conformance testing. In
O. Rafiq, editor, Sixth Int. Workshop on Protocol Test Sys-
tems, number C-19 in IFIP Transactions, pages 257–276. North-
Holland, 1994.

[Tre96a] J. Tretmans. Test generation with inputs, outputs, and qui-
escence. In T. Margaria and B. Steffen, editors, Second Int.
Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’96), pages 127–146. Lecture Notes
in Computer Science 1055, Springer-Verlag, 1996.

[Tre96b] J. Tretmans. Test generation with inputs, outputs and repetitive
quiescence. Software—Concepts and Tools, 17(3):103–120, 1996.

[Tre99] J. Tretmans. Automatic testing with formal methods. In Eu-
roSTAR’99: 7th European Int. Conference on Software Testing,
Analysis & Review, Barcelona, Spain, November 8–12, 1999.

[Tre02] J. Tretmans. Testtechnieken, 2002. Course material for the
course testing techniques.

[Tre08] J. Tretmans. Model based testing with labelled transition sys-
tems. In R. M. Hierons, J. P. Bowen, and M. Harman, editors,
Formal Methods and Testing, volume 4949 of Lecture Notes in
Computer Science, pages 1–38. Springer, 2008.

[Vaa91] F. Vaandrager. On the relationship between process algebra and
Input/Output Automata. In Logic in Computer Science, pages
387–398. Sixth Annual IEEE Symposium, IEEE Computer So-
ciety Press, 1991.

230

Bibliography

[vdBP04] M. van der Bijl and F. Peureux. I/O-automata based testing.
In Broy et al. [BJK+05], pages 173–200.

[vdBRT04] M. van der Bijl, A. Rensink, and J. Tretmans. Compositional
testing with ioco. In A. Petrenko and A. Ulrich, editors, FATES
2003, volume 2931 of Lecture Notes in Computer Science, pages
86–100. Springer, 2004.

[vdBRT05] M. van der Bijl, A. Rensink, and J. Tretmans. Action refinement
in conformance testing. In F. Khendek and R. Dssouli, editors,
Testing of Communicating Systems, 17th IFIP TC6/WG 6.1 In-
ternational Conference, TestCom 2005, Montreal, Canada, May
31 - June 2, 2005, Proceedings, volume 3502 of Lecture Notes in
Computer Science, pages 81–96. Springer, 2005.

[vdBRT07] M. van der Bijl, A. Rensink, and J. Tretmans. Atomic action
refinement in conformance testing. Ctit technical report, Uni-
versity of Twente, August 2007.

[vGG89] R. J. van Glabbeek and U. Goltz. Equivalence notions for con-
current systems and refinement of actions (extended abstract).
In A. Kreczmar and G. Mirkowska, editors, MFCS, volume 379
of Lecture Notes in Computer Science, pages 237–248. Springer,
1989.

[vGG01] R. J. van Glabbeek and U. Goltz. Refinement of actions
and equivalence notions for concurrent systems. Acta Inf.,
37(4/5):229–327, 2001.

[vGV87] R. J. van Glabbeek and F. W. Vaandrager. Petri net models
for algebraic theories of concurrency. In J. W. de Bakker, A. J.
Nijman, and P. C. Treleaven, editors, PARLE (2), volume 259
of Lecture Notes in Computer Science, pages 224–242. Springer,
1987.

[vO06] M. van Osch. Hybrid input-output conformance and test gen-
eration. In K. Havelund, M. Núñez, G. Rosu, and B. Wolff,
editors, FATES/RV, volume 4262 of Lecture Notes in Computer
Science, pages 70–84. Springer, 2006.

[WN94] G. Winskel and M. Nielsen. The Handbook of Logic in Computer
Science, chapter Models for Concurrency, pages 1–148. Oxford
University Press, 1994.

[Wol94] A. Wolfe. Intel fixes a pentium FPU glitch. EE Times, 822:1,
1994.

231

	Introduction
	Why software testing is difficult
	Software development in the real world

	Model-Based Testing
	Research questions
	Overview of the thesis

	Model-Based Testing
	Introduction
	Framework for conformance testing
	Labeled transition system models
	Labeled transition systems
	Representing labeled transition systems
	Input-enabled transition systems

	Input output implementation relations
	Implementation relations defined for IOA
	IOCO based testing

	Testing transition systems
	Conclusion and introspection

	Compositional testing with
	Introduction
	Approach
	Central questions in compositional testing
	Parallel composition
	Hiding

	Underspecification
	Completion
	From to
	Changed semantics for the parallel operator
	Chaos and convergence.

	Testing in context
	Conclusions

	Action Refinement and Model-Based Testing
	Introduction
	Action refinement scenarios
	Refinement function
	Linear output splitting
	Calculator
	Remote procedure call
	Abstraction from underlying components
	User interface refinements
	Database transactions

	Requirements on action refinement for model-based testing
	Action refinement results
	Relevance for model-based testing

	Action refinement classification
	Atomic action refinement in model-based testing
	Conclusion

	Using atomic refinement to obtain refined test-cases
	Introduction
	Transition system refinement
	Trace refinement
	 with refinement
	Test-case refinement
	Mini-test generation
	Building the skeleton for refined test-cases
	Turning test-case skeletons into proper test-cases
	Completeness of test-case refinement

	Constraints revisited
	Conclusion
	Directions for further research
	Non-atomic model refinement
	Non-atomic test-case refinement
	Relaxed refinement

	Concluding remarks
	Proofs of Chapter 3: Compositional testing with
	Proofs of Section 3.3.1: Parallel composition
	Proofs of Section 3.3.2: Hiding
	Proofs of Section 3.4: Underspecification
	Proofs of Section 3.4.3: New parallel composition operator

	Proofs of Chapter 5: Atomic action refinement in MBT
	Proofs Section 5.3: Trace refinement
	Proofs Section 5.2: LTS refinement
	Proofs Section 5.4: ioco with refinement
	Proofs Section 5.5: Test-case refinement

	Samenvatting
	Bibliography

